33 research outputs found
Social-ecological alignment and ecological conditions in coral reefs
Complex social-ecological interactions underpin many environmental problems. To help capture this complexity, we advance an interdisciplinary network modeling framework to identify important relationships between people and nature that can influence environmental conditions. Drawing on comprehensive social and ecological data from five coral reef fishing communities in Kenya; including interviews with 648 fishers, underwater visual census data of reef ecosystem condition, and time-series landings data; we show that positive ecological conditions are associated with ‘social-ecological network closure’ – i.e., fully linked and thus closed network structures between social actors and ecological resources. Our results suggest that when fishers facing common dilemmas form cooperative communication ties with direct resource competitors, they may achieve positive gains in reef fish biomass and functional richness. Our work provides key empirical insight to a growing body of research on social-ecological alignment, and helps to advance an integrative framework that can be applied empirically in different social-ecological contexts
Recommended from our members
BioTIME: A database of biodiversity time series for the Anthropocene.
MotivationThe BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene.Main types of variables includedThe database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record.Spatial location and grainBioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2).Time period and grainBioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year.Major taxa and level of measurementBioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.Software format.csv and .SQL
A database of threat statuses and life-history traits of Red List species in Flanders (northern Belgium)
Red Lists estimate the extinction risk of species at global or regional levels and are important instruments in conservation policies. Global Red List assessments are readily available via the IUCN website (https://www.iucnredlist.org) and are regularly updated by (taxonomic) experts. Regional Red Lists, however, are not always easy to find and often use local criteria to assess the local extinction risk of species.
Here, we publish a database with the outcome of 38 Red List assessments in Flanders (northern Belgium) between 1994 and 2018. In total, the database contains 6,224 records of 5,039 unique taxa pertaining to 24 different taxonomic groups. Using a quality control procedure, we evaluated the criteria used, the number of records, the temporal and spatial distribution of the data and the up-to-dateness of the Red Lists. This way, nineteen Red Lists were approved as being of sufficient high quality (i.e. validated) and nineteen others were not. Once validated, Red Lists are approved by the regional Minister of Environment and published in the Belgian Official Gazette acquiring legal status. For the validated Red Lists, we additionally compiled (life-history) traits that are applicable to a wide variety of species groups (taxonomic kingdom, environment, biotope, nutrient level, dispersal capacity, lifespan and cuddliness). The publication of this dataset allows comparison of Red List statuses with other European regions and countries and permits analyses about how certain (life-history) traits can explain the Red List status of species. The dataset will be regularly updated by adding new Red List (re)assessments and/or additional (life-history) traits
Colorectal Cancer Stem Cells Are Enriched in Xenogeneic Tumors Following Chemotherapy
Patients generally die of cancer after the failure of current therapies to eliminate residual disease. A subpopulation of tumor cells, termed cancer stem cells (CSC), appears uniquely able to fuel the growth of phenotypically and histologically diverse tumors. It has been proposed, therefore, that failure to effectively treat cancer may in part be due to preferential resistance of these CSC to chemotherapeutic agents. The subpopulation of human colorectal tumor cells with an ESA(+)CD44(+) phenotype are uniquely responsible for tumorigenesis and have the capacity to generate heterogeneous tumors in a xenograft setting (i.e. CoCSC). We hypothesized that if non-tumorigenic cells are more susceptible to chemotherapeutic agents, then residual tumors might be expected to contain a higher frequency of CoCSC.Xenogeneic tumors initiated with CoCSC were allowed to reach approximately 400 mm(3), at which point mice were randomized and chemotherapeutic regimens involving cyclophosphamide or Irinotecan were initiated. Data from individual tumor phenotypic analysis and serial transplants performed in limiting dilution show that residual tumors are enriched for cells with the CoCSC phenotype and have increased tumorigenic cell frequency. Moreover, the inherent ability of residual CoCSC to generate tumors appears preserved. Aldehyde dehydrogenase 1 gene expression and enzymatic activity are elevated in CoCSC and using an in vitro culture system that maintains CoCSC as demonstrated by serial transplants and lentiviral marking of single cell-derived clones, we further show that ALDH1 enzymatic activity is a major mediator of resistance to cyclophosphamide: a classical chemotherapeutic agent.CoCSC are enriched in colon tumors following chemotherapy and remain capable of rapidly regenerating tumors from which they originated. By focusing on the biology of CoCSC, major resistance mechanisms to specific chemotherapeutic agents can be attributed to specific genes, thereby suggesting avenues for improving cancer therapy
Protection efforts have resulted in ~10% of existing fish biomass on coral reefs
The amount of ocean protected from fishing and other human impacts has often been used as a metric of conservation progress. However, protection efforts have highly variable outcomes that depend on local conditions, which makes it difficult to quantify what coral reef protection efforts to date have actually achieved at a global scale. Here, we develop a predictive model of how local conditions influence conservation outcomes on ~2,600 coral reef sites across 44 ecoregions, which we used to quantify how much more fish biomass there is on coral reefs compared to a modeled scenario with no protection. Under the assumptions of our model, our study reveals that without existing protection efforts there would be ~10% less fish biomass on coral reefs. Thus, we estimate that coral reef protection efforts have led to approximately 1 in every 10 kg of existing fish biomass
Analysis of whole genome sequencing for the Escherichia coli O157:H7 typing phages
Background:
Shiga toxin producing Escherichia coli O157 can cause severe bloody diarrhea and haemolytic uraemic syndrome. Phage typing of E. coli O157 facilitates public health surveillance and outbreak investigations, certain phage types are more likely to occupy specific niches and are associated with specific age groups and disease severity. The aim of this study was to analyse the genome sequences of 16 (fourteen T4 and two T7) E. coli O157 typing phages and to determine the genes responsible for the subtle differences in phage type profiles.
Results:
The typing phages were sequenced using paired-end Illumina sequencing at The Genome Analysis Centre and the Animal Health and Veterinary Laboratories Agency and bioinformatics programs including Velvet, Brig and Easyfig were used to analyse them. A two-way Euclidian cluster analysis highlighted the associations between groups of phage types and typing phages. The analysis showed that the T7 typing phages (9 and 10) differed by only three genes and that the T4 typing phages formed three distinct groups of similar genomic sequences: Group 1 (1, 8, 11, 12 and 15, 16), Group 2 (3, 6, 7 and 13) and Group 3 (2, 4, 5 and 14). The E. coli O157 phage typing scheme exhibited a significantly modular network linked to the genetic similarity of each group showing that these groups are specialised to infect a subset of phage types.
Conclusion:
Sequencing the typing phage has enabled us to identify the variable genes within each group and to determine how this corresponds to changes in phage type.Public Health EnglandNational Institute for Health Research scientific research development fundBiotechnology and Biological Sciences Research Council (BBSRC
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries