142 research outputs found

    3D atom probe tomography of swift heavy ion irradiated multilayers

    Get PDF
    International audienceNanometer scale layered systems are well suited to investigate atomic transport processes induced by high-energy electronic excitations in materials, through the characterization of the interface transformation. In this study, we used the atom probe technique to determine the distribution of the different elements in an (amorphous-Fe2_2Tb 5 nm/hcp-Co 3 nm)20_{20} multilayer before and after irradiation with Pb ions in the electronic stopping power regime. Atom probe tomography is based on reconstruction of a small volume of a sharp tip evaporated by field effect. It has unique capabilities to characterize internal interfaces and layer chemistry with sub-nanometer scale resolution in three dimensions. Depth composition profiles and 3D element mapping have been determined, evidencing for asymetric interfaces in the as-deposited sample, and very efficient Fe-Co intermixing after irradiation at the fluence 7×10127\times10^{12} ion cm2^{-2}. Estimation of effective atomic diffusion coefficients after irradiation suggests that mixing results from interdiffusion in a molten track across the interface in agreement with the thermal spike model

    The Karoo triple junction questioned : evidence from Jurassic and Proterozoc 40Ar/39Ar ages and geochemistry of the giant Okavango dyke swarm (Botswana).

    Get PDF
    The lower Jurassic Karoo-Ferrar magmatism represents one of the most important Phanerozoic continental flood basalt (CFB) provinces. The Karoo CFB province is dominated by tholeiitic traps and apparently radiating giant dyke swarms covering altogether ca. 3 106 km2. This study focuses on the giant N110j-trending Okavango dyke swarm (ODS) stretching over 1500 km across Botswana. This dyke swarm represents the main (failed) arm of the so-called Karoo triple junction that is generally considered as a key marker of the impingement of the Karoo starting mantle plume head. ODS dolerites yield six new plagioclase 40Ar/39Ar plateau (and miniplateau) ages ranging from 178.7F0.7 and 180.9F1.3 Ma. The distribution of the ages along a narrow Gaussian curve suggests a short period of magmatic activity centered around 179 Ma, i.e., f5 Ma younger than the emplacement age of Karoo mafic magmas in the southern part of the Karoo CFB province (f184). This age difference indicates that Karoo magmatism does not represent a short-lived event as is generally the case for most CFB but lasted at least 5Ma over the whole province. In addition, small clusters of plagioclase separated from 28 other dykes and measured by "speedy" step-heating experiments (with mostly two to three steps), gave either "Karoo" or Proterozoic ages.Integrated ages of the Proterozoic rocks range from 851 6 to 1672 7 Ma, and one plateau age (959.1 4.6 Ma) and one possibly geologically significant weighted mean age (982.7 4.0 Ma) were obtained. Proterozoic and Karoo mafic rocks are petrographically similar, but Proterozoic dykes display clear geochemical differences (e.g., TiO 22.1%). Geochemical data combined with available Ar/Ar dates allow the identification of the two groups within a total set of 77 dykes investigated: f10% of the bulk ODS dykes are Proterozoic. Thus, the Jurassic Karoo ODS dykes were emplaced along reactivated Proterozoic structures and there is no pristine Jurassic Nuanetsi triple junction as commonly proposed. This throws into doubt the validity of the "active plume head" Karoo CFB rift models as being responsible for the observed "triple junction" dyke geometr

    Multi-basin depositional framework for moisture-balance reconstruction during the last 1300 years at Lake Bogoria, central Kenya Rift Valley

    Get PDF
    Multi-proxy analysis of sediment cores from five key locations in hypersaline, alkaline Lake Bogoria (central Kenya Rift Valley) has allowed reconstruction of its history of depositional and hydrological change during the past 1300years. Analyses including organic matter and carbonate content, granulometry, mineralogical composition, charcoal counting and high-resolution scanning of magnetic susceptibility and elemental geochemistry resulted in a detailed sedimentological and compositional characterization of lacustrine deposits in the three lake basins and on the two sills separating them. Thesepalaeolimnological data were supplemented with information on present-day sedimentation conditions based on seasonal sampling of settling particles and on measurement of physicochemical profiles through the water column. A new age model based on Pb-210, Cs-137 and C-14 dating captures the sediment chronology of this hydrochemically complex and geothermally fed lake. An extensive set of chronological tie points between the equivalent high-resolution proxy time series of the five sediment sequences allowed transfer of radiometric dates between the basins, enabling interbasin comparison of sedimentation dynamics through time. The resulting reconstruction demonstrates considerable moisture-balance variability through time, reflecting regional hydroclimate dynamics over the past 1300years. Between ca 690 and 950AD, the central and southern basins of Lake Bogoria were reduced to shallow and separated brine pools. In the former, occasional near-complete desiccation triggered massive trona precipitation. Between ca 950 and 1100AD, slightly higher water levels allowed the build-up of high pCO(2) leading to precipitation of nahcolite still under strongly evaporative conditions. Lake Bogoria experienced a pronounced highstand between ca 1100 and 1350AD, only to recede again afterwards. For a substantial part of the time between ca 1350 and 1800AD, the northern basin was probably disconnected from the united central and southern basins. Throughout the last two centuries, lake level has been relatively high compared to the rest of the past millennium. Evidence for increased terrestrial sediment supply in recent decades, due to anthropogenic soil erosion in the wider Bogoria catchment, is a reason for concern about possible adverse impacts on the unique ecosystem of Lake Bogoria

    The Hominin Sites and Paleolakes Drilling Project:Inferring the environmental context of human evolution from eastern African rift lake deposits

    Get PDF
    Funding for the HSPDP has been provided by ICDP, NSF (grants EAR-1123942, BCS-1241859, and EAR-1338553), NERC (grant NE/K014560/1), DFG priority program SPP 1006, DFG-CRC-806 “Our way to Europe”, the University of Cologne (Germany), the Hong Kong Research Grants Council (grant no. HKBU201912), the Peter Buck Fund for Human Origins Research (Smithsonian), the William H. Donner Foundation, the Ruth and Vernon Taylor Foundation, Whitney and Betty MacMillan, and the Smithsonian’s Human Origins Program.The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012–2014 HSPDP coring campaign.Publisher PDFPeer reviewe

    Asymmetric response of forest and grassy biomes to climate variability across the African Humid Period : influenced by anthropogenic disturbance?

    Get PDF
    A comprehensive understanding of the relationship between land cover, climate change and disturbance dynamics is needed to inform scenarios of vegetation change on the African continent. Although significant advances have been made, large uncertainties exist in projections of future biodiversity and ecosystem change for the world's largest tropical landmass. To better illustrate the effects of climate–disturbance–ecosystem interactions on continental‐scale vegetation change, we apply a novel statistical multivariate envelope approach to subfossil pollen data and climate model outputs (TraCE‐21ka). We target paleoenvironmental records across continental Africa, from the African Humid Period (AHP: ca 14 700–5500 yr BP) – an interval of spatially and temporally variable hydroclimatic conditions – until recent times, to improve our understanding of overarching vegetation trends and to compare changes between forest and grassy biomes (savanna and grassland). Our results suggest that although climate variability was the dominant driver of change, forest and grassy biomes responded asymmetrically: 1) the climatic envelope of grassy biomes expanded, or persisted in increasingly diverse climatic conditions, during the second half of the AHP whilst that of forest did not; 2) forest retreat occurred much more slowly during the mid to late Holocene compared to the early AHP forest expansion; and 3) as forest and grassy biomes diverged during the second half of the AHP, their ecological relationship (envelope overlap) fundamentally changed. Based on these asymmetries and associated changes in human land use, we propose and discuss three hypotheses about the influence of anthropogenic disturbance on continental‐scale vegetation change

    Marine Incursion: The Freshwater Herring of Lake Tanganyika Are the Product of a Marine Invasion into West Africa

    Get PDF
    The spectacular marine-like diversity of the endemic fauna of Lake Tanganyika, the oldest of the African Great Lakes, led early researchers to suggest that the lake must have once been connected to the ocean. Recent geophysical reconstructions clearly indicate that Lake Tanganyika formed by rifting in the African subcontinent and was never directly linked to the sea. Although the Lake has a high proportion of specialized endemics, the absence of close relatives outside Tanganyika has complicated phylogeographic reconstructions of the timing of lake colonization and intralacustrine diversification. The freshwater herring of Lake Tanganyika are members of a large group of pellonuline herring found in western and southern Africa, offering one of the best opportunities to trace the evolutionary history of members of Tanganyika's biota. Molecular phylogenetic reconstructions indicate that herring colonized West Africa 25–50MYA, at the end of a major marine incursion in the region. Pellonuline herring subsequently experienced an evolutionary radiation in West Africa, spreading across the continent and reaching East Africa's Lake Tanganyika during its early formation. While Lake Tanganyika has never been directly connected with the sea, the endemic freshwater herring of the lake are the descendents of an ancient marine incursion, a scenario which may also explain the origin of other Tanganyikan endemics

    Lakeside View: Sociocultural Responses to Changing Water Levels of Lake Turkana, Kenya

    Get PDF
    corecore