127 research outputs found

    Designing optimal- and fast-on-average pattern matching algorithms

    Full text link
    Given a pattern ww and a text tt, the speed of a pattern matching algorithm over tt with regard to ww, is the ratio of the length of tt to the number of text accesses performed to search ww into tt. We first propose a general method for computing the limit of the expected speed of pattern matching algorithms, with regard to ww, over iid texts. Next, we show how to determine the greatest speed which can be achieved among a large class of algorithms, altogether with an algorithm running this speed. Since the complexity of this determination make it impossible to deal with patterns of length greater than 4, we propose a polynomial heuristic. Finally, our approaches are compared with 9 pre-existing pattern matching algorithms from both a theoretical and a practical point of view, i.e. both in terms of limit expected speed on iid texts, and in terms of observed average speed on real data. In all cases, the pre-existing algorithms are outperformed

    Role of the synthesis route on the properties of hybrid LDH-graphene as basic catalysts

    Get PDF
    Layered double hydroxides (LDH or HT) or their derived mixed oxides present marked acid-base properties useful in catalysis, but they lead to agglomerate inducing a weak accessibility to the active sites. In this study we report the preparation and characterization of HT/Graphene (HT/rGO) nanocomposites as active and selective basic catalysts for the acetone condensation reaction. The graphene high specific surface area and structural compatibility with the HT allowed increasing the number and accessibility of the active sites and activity of this later. Two series of HT/rGO nanocomposites with 0.5 = HT/rGO = 10 mass ratio were prepared by: i) direct HT coprecipitation in the presence of GO; ii) self-assembly of preformed HT with GO. The prepared HT/rGO nanocomposites were dried either in air at 80 °C or freeze-dried. A series of characterizations showed the great influence of the preparation method and HT/rGO mass ratio on both the nanocomposite structure and catalytic activity. An optimum activity was observed for a HT/rGO = 10 catalyst. Particularly, the highest catalytic activity was found in those nanocomposites obtained by coprecipitation and freeze dried (3 times more active than bulk HT) which can be connected to their structure with a better accessibility to the basic sites.Postprint (author's final draft

    Role of the synthesis route on the properties of hybrid LDH-graphene as basic catalysts.

    Get PDF
    [EN]Layered double hydroxides (LDH or HT) or their derived mixed oxides present marked acid-base properties useful in catalysis, but they lead to agglomerate inducing a weak accessibility to the active sites. In this study we report the preparation and characterization of HT/Graphene (HT/rGO) nanocomposites as active and selective basic catalysts for the acetone condensation reaction. The graphene high specific surface area and structural compatibility with the HT allowed increasing the number and accessibility of the active sites and activity of this later. Two series of HT/rGO nanocomposites with 0.5 ≤ HT/rGO ≤ 10 mass ratio were prepared by: i) direct HT coprecipitation in the presence of GO; ii) self-assembly of preformed HT with GO. The prepared HT/rGO nanocomposites were dried either in air at 80 °C or freeze-dried. A series of characterizations showed the great influence of the preparation method and HT/rGO mass ratio on both the nanocomposite structure and catalytic activity. An optimum activity was observed for a HT/rGO = 10 catalyst. Particularly, the highest catalytic activity was found in those nanocomposites obtained by coprecipitation and freeze dried (3 times more active than bulk HT) which can be connected to their structure with a better accessibility to the basic sites

    Country-wide assessment of the genetic polymorphism in Plasmodium falciparum and Plasmodium vivax antigens detected with rapid diagnostic tests for malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rapid diagnostic tests (RDTs) are becoming increasingly indispensable in malaria management, as a means of increasing the accuracy of diagnosis. The WHO has issued recommendations, but the selection of the most suitable RDT remains difficult for users in endemic countries. The genetic variability of the antigens detected with RDTs has been little studied, but may affect the sensitivity of RDTs. This factor has been studied by comparisons between countries at continental level, but little information is available concerning antigen variability within a given country.</p> <p>Methods</p> <p>A country-wide assessment of polymorphism of the PfHRP2, PfHRP3, pLDH and aldolase antigens was carried out in 260 <it>Plasmodium falciparum </it>and 127 <it>Plasmodium vivax </it>isolates, by sequencing the genes encoding these antigens in parasites originating from the various epidemiological strata for malaria in Madagascar.</p> <p>Results</p> <p>Higher levels of polymorphism were observed for the <it>pfhrp2 </it>and <it>pfhrp3 </it>genes than for the <it>P. falciparum </it>and <it>P. vivax aldolase </it>and <it>pldh </it>genes. <it>Pfhrp2 </it>sequence analysis predicted that 9% of Malagasy isolates would not be detected at parasite densities ≤ 250 parasites/μl (ranging from 6% in the north to 14% in the south), although RDTs based on PfHRP2 detection are now recommended in Madagascar.</p> <p>Conclusion</p> <p>These findings highlight the importance of training of health workers and the end users of RDTs in the provision of information about the possibility of false-negative results for patients with clinical symptoms of malaria, particularly in the south of Madagascar.</p

    Valorisation du glycérol par polycondensation catalytique

    Get PDF
    Ce travail de thèse s'inscrit dans le cadre de la valorisation du glycérol par polycondensation catalytique. L'objectif est l'obtention de nouveaux catalyseurs basiques hétérogènes actifs et sélectifs pour effectuer la polycondensation directe du glycérol en polymères contenant plus de 5 unités monomères, tout en évitant les sous-produits toxiques (acroléine) et les polymères cycliques. Des précurseurs de catalyseurs associant le lanthane et les différents cations alcalino-terreux ont été obtenus par co-précipitation conventionnelle ou par une voie originale utilisant des ionogels bi-cationiques d'alginate. L'influence de la méthode de préparation, de la température d'activation, de la nature et du contenu en cations alcalino-terreux sur les propriétés physico-chimiques (composition, nature des phases, surfaces spécifiques) et la basicité des catalyseurs a été étudiée. Elles ont été reliées à l'activité et la sélectivité des produits obtenus dans la réaction de polycondensation du glycérol effectuée à 533 K en réacteur batch.This PhD work deals with the valorization of glycerol by catalytic polycondensation. The main objective is to obtain new heterogeneous basic catalysts, active and selective, able to perform the direct polycondensation of glycerol into polymers containing more than 5 monomer units, avoiding toxic by-products (acrolein) and cyclic polymers. Catalyst precursors involving lanthanum and the various alkaline earth metal cations have been obtained by conventional co-precipitation or by an original route using bi-cationic ionogels of alginate. The influence of the preparation method, the activation temperature, the nature and the content of alkaline earth cations on the physico-chemical properties (composition, nature of the phases, specific surface area) and the basicity of the catalysts was studied. They were related to the activity and selectivity of the products obtained in the polycondensation reaction of glycerol performed at 533 K in batch reactor.MONTPELLIER-Ecole Nat.Chimie (341722204) / SudocSudocFranceF

    Enhanced photocatalytic degradation of methylene blue: Preparation of TiO2/reduced graphene oxide nanocomposites by direct sol-gel and hydrothermal methods

    Get PDF
    In this study, two different preparation methods of titanium dioxide nanoparticles/reduced graphene oxide nanocomposites were investigated using direct sol-gel method followed by hydrothermal treatment or simple hydrothermal route. A different amount of graphene (1- 20%) was mixed with TiO2 for both series of samples in order to improve the photocatalytic activity. The influence of the preparation method on the physico-chemical properties was established by different characterization methods and the photocatalytic degradation of methylene blue (MB) under UV light irradiation was used as test reaction. The highest photocatalytic activity was observed for the nanocomposites containing 10 wt% of graphene. The elimination of MB can reach 93% and 82% for the nanocomposites with 10 wt% graphene prepared by the sol-gel and hydrothermal methods, respectively. These photocatalysts are promising for practical application in nanotechnology.Postprint (author's final draft

    Synthesis and controlled release properties of 2,4-dichlorophenoxy acetate–zinc layered hydroxide nanohybrid

    Get PDF
    Direct reaction of ZnO with 2,4-dichlorophenoxyacetic acid (24D) solutions of different concentrations allows obtaining new organic–inorganic nanohybrid materials formed by intercalation of 24D into interlayers of zinc layered hydroxide (ZLH). XRD patterns show a progressive evolution of the structure as 24D concentration increases. The nanohybrid obtained at higher 24D concentration (24D–ZLH(0.4)) reveals a well ordered layered structure with two different basal spacings at 25.2 Å and 24 Å. The FTIR spectrum showing the vibrations bands of the functional groups of 24D and of the ZLH confirms the intercalation. SEM images are in agreement with the structural evolution observed by XRD and reveal the ribbon morphology of the nanohybrids. The release studies of 24D showed a rapid release of 94% for the first 100 min governed by the pseudo-second order kinetic model

    Plasmodium falciparum parasite population structure and gene flow associated to anti-malarial drugs resistance in Cambodia

    Get PDF
    Background: Western Cambodia is recognized as the epicentre of emergence of Plasmodium falciparum multi-drug resistance. The emergence of artemisinin resistance has been observed in this area since 2008–2009 and molecular signatures associated to artemisinin resistance have been characterized in k13 gene. At present, one of the major threats faced, is the possible spread of Asian artemisinin resistant parasites over the world threatening millions of people and jeopardizing malaria elimination programme efforts. To anticipate the diffusion of artemisinin resistance, the identification of the P. falciparum population structure and the gene flow among the parasite population in Cambodia are essential. Methods: To this end, a mid-throughput PCR-LDR-FMA approach based on LUMINEX technology was developed to screen for genetic barcode in 533 blood samples collected in 2010–2011 from 16 health centres in malaria endemics areas in Cambodia. Results: Based on successful typing of 282 samples, subpopulations were characterized along the borders of the country. Each 11-loci barcode provides evidence supporting allele distribution gradient related to subpopulations and gene flow. The 11-loci barcode successfully identifies recently emerging parasite subpopulations in western Cambodia that are associated with the C580Y dominant allele for artemisinin resistance in k13 gene. A subpopulation was identified in northern Cambodia that was associated to artemisinin (R539T resistant allele of k13 gene) and mefloquine resistance. Conclusions: The gene flow between these subpopulations might have driven the spread of artemisinin resistance over Cambodia

    Chloroquine Clinical Failures in P. falciparum Malaria Are Associated with Mutant Pfmdr-1, Not Pfcrt in Madagascar

    Get PDF
    Molecular studies have demonstrated that mutations in the Plasmodium falciparum chloroquine resistance transporter gene (Pfcrt) play a major role in chloroquine resistance, while mutations in P. falciparum multidrug resistance gene (Pfmdr-1) act as modulator. In Madagascar, the high rate of chloroquine treatment failure (44%) appears disconnected from the overall level of in vitro CQ susceptibility (prevalence of CQ-resistant parasites <5%) or Pfcrt mutant isolates (<1%), strongly contrasting with sub-Saharan African countries. Previous studies showed a high frequency of Pfmdr-1 mutant parasites (>60% of isolates), but did not explore their association with P. falciparum chloroquine resistance. To document the association of Pfmdr-1 alleles with chloroquine resistance in Madagascar, 249 P. falciparum samples collected from patients enrolled in a chloroquine in vivo efficacy study were genotyped in Pfcrt/Pfmdr-1 genes as well as the estimation of the Pfmdr-1 copy number. Except 2 isolates, all samples displayed a wild-type Pfcrt allele without Pfmdr-1 amplification. Chloroquine treatment failures were significantly associated with Pfmdr-1 86Y mutant codon (OR = 4.6). The cumulative incidence of recurrence of patients carrying the Pfmdr-1 86Y mutation at day 0 (21 days) was shorter than patients carrying Pfmdr-1 86N wild type codon (28 days). In an independent set of 90 selected isolates, in vitro susceptibility to chloroquine was not associated with Pfmdr-1 polymorphisms. Analysis of two microsatellites flanking Pfmdr-1 allele showed that mutations occurred on multiple genetic backgrounds. In Madagascar, Pfmdr-1 polymorphism is associated with late chloroquine clinical failures and unrelated with in vitro susceptibility or Pfcrt genotype. These results highlight the limits of the current in vitro tests routinely used to monitor CQ drug resistance in this unique context. Gaining insight about the mechanisms that regulate polymorphism in Pfmdr1 remains important, particularly regarding the evolution and spread of Pfmdr-1 alleles in P. falciparum populations under changing drug pressure which may have important consequences in terms of antimalarial use management
    corecore