599 research outputs found
On Optimal Tightness for Key Exchange with Full Forward Secrecy via Key Confirmation
A standard paradigm for building key exchange protocols with full forward secrecy (and explicit authentication) is to add key confirmation messages to an underlying protocol having only weak forward secrecy (and implicit authentication). Somewhat surprisingly, we show through an impossibility result that this simple trick must nevertheless incur a linear tightness loss in the number of parties for many natural protocols. This includes Krawczyk\u27s HMQV protocol (CRYPTO 2005) and the protocol of Cohn-Gordon et al. (CRYPTO 2019).
Cohn-Gordon et al. gave a very efficient underlying protocol with weak forward secrecy having a linear security loss, and showed that this is optimal for certain reductions. However, they also claimed that full forward secrecy could be achieved by adding key confirmation messages, and without any additional loss. Our impossibility result disproves this claim, showing that their approach, in fact, has an overall quadratic loss.
Motivated by this predicament we seek to restore the original linear loss claim of Cohn-Gordon et al. by using a different proof strategy. Specifically, we start by lowering the goal for the underlying protocol with weak forward secrecy, to a selective security notion where the adversary must commit to a long-term key it cannot reveal. This allows a tight reduction rather than a linear loss reduction. Next, we show that the protocol can be upgraded to full forward secrecy using key confirmation messages with a linear tightness loss, even when starting from the weaker selective security notion. Thus, our approach yields an overall tightness loss for the fully forward-secret protocol that is only linear, as originally claimed. Finally, we confirm that the underlying protocol of Cohn-Gordon et al. can indeed be proven selectively secure, tightly
Highly Efficient Key Exchange Protocols with Optimal Tightness -- Enabling real-world deployments with theoretically sound parameters
In this paper we give nearly tight reductions for modern implicitly authenticated Diffie-Hellman protocols in the style of the Signal and Noise protocols, which are extremely simple and efficient. Unlike previous approaches, the combination of nearly tight proofs and efficient protocols enables the first real-world instantiations for which the parameters can be chosen in a theoretically sound manner, i.e., according to the bounds of the reductions. Specifically, our reductions have a security loss which is only linear in the number of users and constant in the number of sessions per user
. This is much better than most other key exchange proofs which are typically quadratic in the product . Combined with the simplicity of our protocols, this implies that our protocols are more efficient than the state of the art when soundly instantiated.
We also prove that our security proofs are optimal: a linear loss in the number of users is unavoidable for our protocols for a large and natural class of reductions
Highly Efficient Key Exchange Protocols with Optimal Tightness: Enabling real-world deployments with theoretically sound parameters
In this paper we give nearly-tight reductions for modern implicitly authenticated Diffie-Hellman protocols in the style of the Signal and Noise protocols which are extremely simple and efficient. Unlike previous approaches, the combination of nearly-tight proofs and efficient protocols enables the first real-world instantiations for which the parameters can be chosen in a theoretically sound manner.
Our reductions have only a linear loss in the number of users, implying that our protocols are more efficient than the state of the art when instantiated with theoretically sound parameters. We also prove that our security proofs are optimal: a linear loss in the number of users is unavoidable for our protocols for a large and natural class of reductions
Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model
Mitochondrial dysfunction is a hallmark of neurodegenerative diseases including Alzheimer’s disease (AD), with morphological and functional abnormalities limiting the electron transport chain and ATP production. A contributing factor of mitochondrial abnormalities is loss of nicotinamide adenine dinucleotide (NAD), an important cofactor in multiple metabolic reactions. Depletion of mitochondrial and consequently cellular NAD(H) levels by activated NAD glycohydrolases then culminates in bioenergetic failure and cell death. De Novo NAD+ synthesis from tryptophan requires a multi-step enzymatic reaction. Thus, an alternative strategy to maintain cellular NAD+ levels is to administer NAD+ precursors facilitating generation via a salvage pathway. We administered nicotinamide mononucleotide (NMN), an NAD+ precursor to APP(swe)/PS1(ΔE9) double transgenic (AD-Tg) mice to assess amelioration of mitochondrial respiratory deficits. In addition to mitochondrial respiratory function, we examined levels of full-length mutant APP, NAD+-dependent substrates (SIRT1 and CD38) in homogenates and fission/fusion proteins (DRP1, OPA1 and MFN2) in mitochondria isolated from brain. To examine changes in mitochondrial morphology, bigenic mice possessing a fluorescent protein targeted to neuronal mitochondria (CaMK2a-mito/eYFP), were administered NMN. Mitochondrial oxygen consumption rates were examined in N2A neuroblastoma cells and non-synaptic brain mitochondria isolated from mice (3 months). Western blotting was utilized to assess APP, SIRT1, CD38, DRP1, OPA1 and MFN2 in brain of transgenic and non-transgenic mice (3–12 months). Mitochondrial morphology was assessed with confocal microscopy. One-way or two-way analysis of variance (ANOVA) and post-hoc Holm-Sidak method were used for statistical analyses of data. Student t-test was used for direct comparison of two groups. We now demonstrate that mitochondrial respiratory function was restored in NMN-treated AD-Tg mice. Levels of SIRT1 and CD38 change with age and NMN treatment. Furthermore, we found a shift in dynamics from fission to fusion proteins in the NMN-treated mice. This is the first study to directly examine amelioration of NAD+ catabolism and changes in mitochondrial morphological dynamics in brain utilizing the immediate precursor NMN as a potential therapeutic compound. This might lead to well-defined physiologic abnormalities that can serve an important role in the validation of promising agents such as NMN that target NAD+ catabolism preserving mitochondrial function.https://doi.org/10.1186/s12883-015-0272-
Heart failure with preserved ejection fraction: diagnosis, risk assessment, and treatment
The aetiology of heart failure with preserved ejection fraction (HFpEF) is heterogenous and overlaps with that of several comorbidities like atrial fibrillation, diabetes mellitus, chronic kidney disease, valvular heart disease, iron deficiency, or sarcopenia. The diagnosis of HFpEF involves evaluating cardiac dysfunction through imaging techniques and assessing increased left ventricular filling pressure, which can be measured directly or estimated through various proxies including natriuretic peptides. To better narrow down the differential diagnosis of HFpEF, European and American heart failure guidelines advocate the use of different algorithms including comorbidities that require diagnosis and rigorous treatment during the evaluation process. Therapeutic recommendations differ between guidelines. Whilst sodium glucose transporter 2 inhibitors have a solid evidence base, the recommendations differ with regard to the use of inhibitors of the renin–angiotensin–aldosterone axis. Unless indicated for specific comorbidities, the use of beta-blockers should be discouraged in HFpEF. The aim of this article is to provide an overview of the current state of the art in HFpEF diagnosis, clinical evaluation, and treatment
Therapeutic impact of cytoreductive surgery and irradiation of posterior fossa ependymoma in the molecular era: a retrospective multicohort analysis
PURPOSE: Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known. METHODS: Four independent nonoverlapping retrospective cohorts of posterior fossa ependymomas (n = 820) were profiled using genome-wide methylation arrays. Risk stratification models were designed based on known clinical and newly described molecular biomarkers identified by multivariable Cox proportional hazards analyses. RESULTS: Molecular subgroup is a powerful independent predictor of outcome even when accounting for age or treatment regimen. Incompletely resected EPN_PFA ependymomas have a dismal prognosis, with a 5-year progression-free survival ranging from 26.1% to 56.8% across all four cohorts. Although first-line (adjuvant) radiation is clearly beneficial for completely resected EPN_PFA, a substantial proportion of patients with EPN_PFB can be cured with surgery alone, and patients with relapsed EPN_PFB can often be treated successfully with delayed external-beam irradiation. CONCLUSION: The most impactful biomarker for posterior fossa ependymoma is molecular subgroup affiliation, independent of other demographic or treatment variables. However, both EPN_PFA and EPN_PFB still benefit from increased extent of resection, with the survival rates being particularly poor for subtotally resected EPN_PFA, even with adjuvant radiation therapy. Patients with EPN_PFB who undergo gross total resection are at lower risk for relapse and should be considered for inclusion in a randomized clinical trial of observation alone with radiation reserved for those who experience recurrence
Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease.
BACKGROUND: The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets. METHODS: Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes. RESULTS: We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P=4.2×10(-10)) and ANGPTL4 (p.E40K; minor-allele frequency, 2.01%; odds ratio, 0.86; P=4.0×10(-8)), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P=0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P=0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P=2.0×10(-4)) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 0.94; P=2.5×10(-7)). CONCLUSIONS: We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with protection from coronary artery disease. (Funded by the National Institutes of Health and others.).Supported by a career development award from the National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) (K08HL114642 to Dr. Stitziel) and by the Foundation for Barnes–Jewish Hospital. Dr. Peloso is supported by the National Heart, Lung, and Blood Institute of the NIH (award number K01HL125751). Dr. Kathiresan is supported by a Research Scholar award from the Massachusetts General Hospital, the Donovan Family Foundation, grants from the NIH (R01HL107816 and R01HL127564), a grant from Fondation Leducq, and an investigator-initiated grant from Merck. Dr. Merlini was supported by a grant from the Italian Ministry of Health (RFPS-2007-3-644382). Drs. Ardissino and Marziliano were supported by Regione Emilia Romagna Area 1 Grants. Drs. Farrall and Watkins acknowledge the support of the Wellcome Trust core award (090532/Z/09/Z), the British Heart Foundation (BHF) Centre of Research Excellence. Dr. Schick is supported in part by a grant from the National Cancer Institute (R25CA094880). Dr. Goel acknowledges EU FP7 & Wellcome Trust Institutional strategic support fund. Dr. Deloukas’s work forms part of the research themes contributing to the translational research portfolio of Barts Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institute for Health Research (NIHR). Drs. Webb and Samani are funded by the British Heart Foundation, and Dr. Samani is an NIHR Senior Investigator. Dr. Masca was supported by the NIHR Leicester Cardiovascular Biomedical Research Unit (BRU), and this work forms part of the portfolio of research supported by the BRU. Dr. Won was supported by a postdoctoral award from the American Heart Association (15POST23280019). Dr. McCarthy is a Wellcome Trust Senior Investigator (098381) and an NIHR Senior Investigator. Dr. Danesh is a British Heart Foundation Professor, European Research Council Senior Investigator, and NIHR Senior Investigator. Drs. Erdmann, Webb, Samani, and Schunkert are supported by the FP7 European Union project CVgenes@ target (261123) and the Fondation Leducq (CADgenomics, 12CVD02). Drs. Erdmann and Schunkert are also supported by the German Federal Ministry of Education and Research e:Med program (e:AtheroSysMed and sysINFLAME), and Deutsche Forschungsgemeinschaft cluster of excellence “Inflammation at Interfaces” and SFB 1123. Dr. Kessler received a DZHK Rotation Grant. The analysis was funded, in part, by a Programme Grant from the BHF (RG/14/5/30893 to Dr. Deloukas). Additional funding is listed in the Supplementary Appendix.This is the author accepted manuscript. The final version is available from the Massachusetts Medical Society via http://dx.doi.org/10.1056/NEJMoa150765
Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis
Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known
Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension
High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to ~192,000 individuals, and used ~155,063 samples for independent replication. We identified 31 novel blood pressure or hypertension associated genetic regions in the general population, including three rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5mmHg/allele) than common variants. Multiple rare, nonsense and missense variant associations were found in A2ML1 and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention
- …