72 research outputs found

    Reliability and Diagnostic Performance of CT Imaging Criteria in the Diagnosis of Tuberculous Meningitis

    Get PDF
    The original publication is available at http:// www.plosone.orgPublication of this article was funded by the Stellenbosch University Open Access Fund.Introduction: Abnormalities on CT imaging may contribute to the diagnosis of tuberculous meningitis (TBM). Recently, an expert consensus case definition (CCD) and set of imaging criteria for diagnosing basal meningeal enhancement (BME) have been proposed. This study aimed to evaluate the sensitivity, specificity and reliability of these in a prospective cohort of adult meningitis patients. Methods: Initial diagnoses were based on the CCD, classifying patients into: ‘Definite TBM’ (microbiological confirmation), ‘Probable TBM’ (diagnostic score $10), ‘Possible TBM’ (diagnostic score 6–9), ‘Not TBM’ (confirmation of an alternative diagnosis) or ‘Uncertain’ (diagnostic score of ,6). CT images were evaluated independently on two occasions by four experienced reviewers. Intra-rater and inter-rater agreement were calculated using the kappa statistic. Sensitivities and specificities were calculated using both ‘Definite TBM’ and either ‘Definite TBM’ or ‘Probable TBM’ as gold standards. Results: CT scan criteria for BME had good intra-rater agreement (k range 0.35–0.78) and fair to moderate inter-rater agreement (k range 0.20–0.52). Intra- and inter-rater agreement on the CCD components were good to fair (k = ranges 0.47–0.81 and 0.21–0.63). Using ‘Definite TBM’ as a gold standard, the criteria for BME were very specific (61.5%–100%), but insensitive (5.9%–29.4%). Similarly, the imaging components of the CCD were highly specific (69.2–100%) but lacked sensitivity (0–56.7%). Similar values were found when using ‘Definite TBM’ or ‘Probable TBM’ as a gold standard. Discussion: The fair to moderate inter-rater agreement and poor sensitivities of the criteria for BME suggest that little reliance should be placed in these features in isolation. While the presence of the CCD criteria of acute infarction or tuberculoma(s) appears useful as rule-in criteria, their absence is of little help in excluding TBM. The CCD and criteria for BME, as well as any new criteria, need to be standardized and validated in prospective cohort studies.Funding: KB received funding from the Discovery Foundation (Academic Fellowship Award; http://www.discovery.co.za/portal/loggedout-individual/discoverycommunity- about), College of Neurology of South Africa (K.M. Browse Award; http://www.collegemedsa.ac.za/Default.aspx ) and the University of Stellenbosch. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Publisher's versio

    A robust SNP barcode for typing Mycobacterium tuberculosis complex strains

    Get PDF
    Strain-specific genomic diversity in the Mycobacterium tuberculosis complex (MTBC) is an important factor in pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Several systems have been proposed to classify MTBC strains into distinct lineages and families. Here, we investigate single-nucleotide polymorphisms (SNPs) as robust (stable) markers of genetic variation for phylogenetic analysis. We identify ~92k SNP across a global collection of 1,601 genomes. The SNP-based phylogeny is consistent with the gold-standard regions of difference (RD) classification system. Of the ~7k strain-specific SNPs identified, 62 markers are proposed to discriminate known circulating strains. This SNP-based barcode is the first to cover all main lineages, and classifies a greater number of sublineages than current alternatives. It may be used to classify clinical isolates to evaluate tools to control the disease, including therapeutics and vaccines whose effectiveness may vary by strain type

    Intensified treatment with high dose Rifampicin and Levofloxacin compared to standard treatment for adult patients with Tuberculous Meningitis (TBM-IT): protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tuberculous meningitis is the most severe form of tuberculosis. Mortality for untreated tuberculous meningitis is 100%. Despite the introduction of antibiotic treatment for tuberculosis the mortality rate for tuberculous meningitis remains high; approximately 25% for HIV-negative and 67% for HIV positive patients with most deaths occurring within one month of starting therapy. The high mortality rate in tuberculous meningitis reflects the severity of the condition but also the poor antibacterial activity of current treatment regimes and relatively poor penetration of these drugs into the central nervous system. Improving the antitubercular activity in the central nervous system of current therapy may help improve outcomes. Increasing the dose of rifampicin, a key drug with known poor cerebrospinal fluid penetration may lead to higher drug levels at the site of infection and may improve survival. Of the second generation fluoroquinolones, levofloxacin may have the optimal pharmacological features including cerebrospinal fluid penetration, with a ratio of Area Under the Curve (AUC) in cerebrospinal fluid to AUC in plasma of >75% and strong bactericidal activity against <it>Mycobacterium tuberculosis</it>. We propose a randomized controlled trial to assess the efficacy of an intensified anti-tubercular treatment regimen in tuberculous meningitis patients, comparing current standard tuberculous meningitis treatment regimens with standard treatment intensified with high-dose rifampicin and additional levofloxacin.</p> <p>Methods/Design</p> <p>A randomized, double blind, placebo-controlled trial with two parallel arms, comparing standard Vietnamese national guideline treatment for tuberculous meningitis with standard treatment <it>plus </it>an increased dose of rifampicin (to 15 mg/kg/day total) and additional levofloxacin. The study will include 750 patients (375 per treatment group) including a minimum of 350 HIV-positive patients. The calculation assumes an overall mortality of 40% vs. 30% in the two arms, respectively (corresponding to a target hazard ratio of 0.7), a power of 80% and a two-sided significance level of 5%. Randomization ratio is 1:1. The primary endpoint is overall survival, i.e. time from randomization to death during a follow-up period of 9 months. Secondary endpoints are: neurological disability at 9 months, time to new neurological event or death, time to new or recurrent AIDS-defining illness or death (in HIV-positive patients only), severe adverse events, and rate of treatment interruption for adverse events.</p> <p>Discussion</p> <p>Currently very few options are available for the treatment of TBM and the mortality rate remains unacceptably high with severe disabilities seen in many of the survivors. This trial is based on the hypothesis that current anti-mycobacterial treatment schedules for TBM are not potent enough and that outcomes will be improved by increasing the CSF penetrating power of this regimen by optimising dosage and using additional drugs with better CSF penetration.</p> <p>Trial registration</p> <p>International Standard Randomised Controlled Trial Number <a href="http://www.controlled-trials.com/ISRCTN61649292">ISRCTN61649292</a></p

    Inactivation of Staphylococcal Phenol Soluble Modulins by Serum Lipoprotein Particles

    Get PDF
    Staphylococcus aureus virulence has been associated with the production of phenol soluble modulins (PSM). PSM are known to activate, attract and lyse neutrophils. However, the functional characterizations were generally performed in the absence of human serum. Here, we demonstrate that human serum can inhibit all the previously-described activities of PSM. We observed that serum can fully block both the cell lysis and FPR2 activation of neutrophils. We show a direct interaction between PSM and serum lipoproteins in human serum and whole blood. Subsequent analysis using purified high, low, and very low density lipoproteins (HDL, LDL, and VLDL) revealed that they indeed neutralize PSM. The lipoprotein HDL showed highest binding and antagonizing capacity for PSM. Furthermore, we show potential intracellular production of PSM by S. aureus upon phagocytosis by neutrophils, which opens a new area for exploration of the intracellular lytic capacity of PSM. Collectively, our data show that in a serum environment the function of PSM as important extracellular toxins should be reconsidered

    Proton-Assisted Amino Acid Transporter PAT1 Complexes with Rag GTPases and Activates TORC1 on Late Endosomal and Lysosomal Membranes

    Get PDF
    Mammalian Target of Rapamycin Complex 1 (mTORC1) is activated by growth factor-regulated phosphoinositide 3-kinase (PI3K)/Akt/Rheb signalling and extracellular amino acids (AAs) to promote growth and proliferation. These AAs induce translocation of mTOR to late endosomes and lysosomes (LELs), subsequent activation via mechanisms involving the presence of intralumenal AAs, and interaction between mTORC1 and a multiprotein assembly containing Rag GTPases and the heterotrimeric Ragulator complex. However, the mechanisms by which AAs control these different aspects of mTORC1 activation are not well understood. We have recently shown that intracellular Proton-assisted Amino acid Transporter 1 (PAT1)/SLC36A1 is an essential mediator of AA-dependent mTORC1 activation. Here we demonstrate in Human Embryonic Kidney (HEK-293) cells that PAT1 is primarily located on LELs, physically interacts with the Rag GTPases and is required for normal AA-dependent mTOR relocalisation. We also use the powerful in vivo genetic methodologies available in Drosophila to investigate the regulation of the PAT1/Rag/Ragulator complex. We show that GFP-tagged PATs reside at both the cell surface and LELs in vivo, mirroring PAT1 distribution in several normal mammalian cell types. Elevated PI3K/Akt/Rheb signalling increases intracellular levels of PATs and synergistically enhances PAT-induced growth via a mechanism requiring endocytosis. In light of the recent identification of the vacuolar H+-ATPase as another Rag-interacting component, we propose a model in which PATs function as part of an AA-sensing engine that drives mTORC1 activation from LEL compartments

    A systematic review of the reporting of Data Monitoring Committees' roles, interim analysis and early termination in pediatric clinical trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Decisions about interim analysis and early stopping of clinical trials, as based on recommendations of Data Monitoring Committees (DMCs), have far reaching consequences for the scientific validity and clinical impact of a trial. Our aim was to evaluate the frequency and quality of the reporting on DMC composition and roles, interim analysis and early termination in pediatric trials.</p> <p>Methods</p> <p>We conducted a systematic review of randomized controlled clinical trials published from 2005 to 2007 in a sample of four general and four pediatric journals. We used full-text databases to identify trials which reported on DMCs, interim analysis or early termination, and included children or adolescents. Information was extracted on general trial characteristics, risk of bias, and a set of parameters regarding DMC composition and roles, interim analysis and early termination.</p> <p>Results</p> <p>110 of the 648 pediatric trials in this sample (17%) reported on DMC or interim analysis or early stopping, and were included; 68 from general and 42 from pediatric journals. The presence of DMCs was reported in 89 of the 110 included trials (81%); 62 papers, including 46 of the 89 that reported on DMCs (52%), also presented information about interim analysis. No paper adequately reported all DMC parameters, and nine (15%) reported all interim analysis details. Of 32 trials which terminated early, 22 (69%) did not report predefined stopping guidelines and 15 (47%) did not provide information on statistical monitoring methods.</p> <p>Conclusions</p> <p>Reporting on DMC composition and roles, on interim analysis results and on early termination of pediatric trials is incomplete and heterogeneous. We propose a minimal set of reporting parameters that will allow the reader to assess the validity of trial results.</p

    Viral, bacterial, and fungal infections of the oral mucosa:Types, incidence, predisposing factors, diagnostic algorithms, and management

    Get PDF

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Critical analysis of antibacterial agents in clinical development

    No full text
    The antibacterial agents currently in clinical development are predominantly derivatives of well-established antibiotic classes and were selected to address the class-specific resistance mechanisms and determinants that were known at the time of their discovery. Many of these agents aim to target the antibiotic-resistant priority pathogens listed by the WHO, including Gram-negative bacteria in the critical priority category, such as carbapenem-resistant Acinetobacter, Pseudomonas and Enterobacterales. Although some current compounds in the pipeline have exhibited increased susceptibility rates in surveillance studies that depend on geography, pre-existing cross-resistance both within and across antibacterial classes limits the activity of many of the new agents against the most extensively drug-resistant (XDR) and pan-drug-resistant (PDR) Gram-negative pathogens. In particular, cross-resistance to unrelated classes may occur by co-selection of resistant strains, thus leading to the rapid emergence and subsequent spread of resistance. There is a continued need for innovation and new-class antibacterial agents in order to provide effective therapeutic options against infections specifically caused by XDR and PDR Gram-negative bacteria
    corecore