315 research outputs found

    Regenerated optic fibers in goldfish reestablish a crude sectoral order in the visual pathway

    Full text link
    The goldfish optic pathway is regenerated after an optic nerve crush. We have examined the axonal topography of the regenerated pathway by labeling, with horseradish peroxidase (HRP), axons originating from retinal sectors or annuli. The positions of the labeled axons in the cross section of the pathway were compared to the normal and related to the factors that may influence axonal pathfinding. The positions of retinal axons in the cross section of the normal pathway are predictable from the retinal addresses of the ganglion cells described by the polar coordinates r (the distance from the optic disc) and θ (the sectoral or clockface position). The two coordinates map orthogonally onto the cross section of the pathway; r varies monotonically along one axis; θ varies along a perpendicular axis. The normal r-order, present in the nonregenerated stump of the experimental nerve, was severely degraded and perhaps lost entirely in the regenerated optic nerve, tract, and brachia. Sectoral order was also lost as the axons passed the crush site, but it was reestablished, albeit crudely, in the regenerated tract and brachia where axons tended to occupy positions appropriate to their dorsal, ventral, nasal, and temporal retinal origins. The exit sequence of the regenerated axons from the stratum opticum into the tectal neuropil was normal: temporal first, nasal last. These results suggest that the regenerating fibers followed some θ specific cue located in the nonaxonal environment. It seems likely that the original axons probably followed the same cue. In contrast, the absence of r-order suggests that there is no r-specific cue for the regenerates to follow. It seems likely that the original r-order was a consequence of nonspecific influences—the orderly spatiotemporal growth of the retina and the existence of a permissive region for axonal growth.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50041/1/902770306_ftp.pd

    Evolutionary Changes in the Complexity of the Tectum of Nontetrapods: A Cladistic Approach

    Get PDF
    Background: The tectum is a structure localized in the roof of the midbrain in vertebrates, and is taken to be highly conserved in evolution. The present article assessed three hypotheses concerning the evolution of lamination and citoarchitecture of the tectum of nontetrapod animals: 1) There is a significant degree of phylogenetic inertia in both traits studied (number of cellular layers and number of cell classes in tectum); 2) Both traits are positively correlated accross evolution after correction for phylogeny; and 3) Different developmental pathways should generate different patterns of lamination and cytoarchitecture. Methodology/Principal Findings: The hypotheses were tested using analytical-computational tools for phylogenetic hypothesis testing. Both traits presented a considerably large phylogenetic signal and were positively associated. However, no difference was found between two clades classified as per the general developmental pathways of their brains. Conclusions/Significance: The evidence amassed points to more variation in the tectum than would be expected by phylogeny in three species from the taxa analysed; this variation is not better explained by differences in the main course of development, as would be predicted by the developmental clade hypothesis. Those findings shed new light on th

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Overview of the JET ITER-like wall divertor

    Get PDF

    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

    Get PDF

    Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas

    Get PDF

    ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade

    Get PDF

    Assessment of erosion, deposition and fuel retention in the JET-ILW divertor from ion beam analysis data

    Get PDF

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
    • …
    corecore