10,677 research outputs found

    Cold dilute neutron matter on the lattice I: Lattice virial coefficients and large scattering lengths

    Full text link
    We study cold dilute neutron matter on the lattice using an effective field theory. We work in the unitary limit in which the scattering length is much larger than the interparticle spacing. In this paper we focus on the equation of state at temperatures above the Fermi temperature and compare lattice simulations to the virial expansion on the lattice and in the continuum. We find that in the unitary limit lattice discretization errors in the second virial coefficient are significantly enhanced. As a consequence the equation of state does not show the universal scaling behavior expected in the unitary limit. We suggest that scaling can be improved by tuning the second virial coefficient rather than the scattering length.Comment: 17 pages, 12 figure

    Breaking time-reversal symmetry with a superconducting flux capacitor

    Full text link
    We present the design of a passive, on-chip microwave circulator based on a ring of superconducting tunnel junctions. We investigate two distinct physical realisations, based on either Josephson junctions (JJ) or quantum phase slip elements (QPS), with microwave ports coupled either capacitively (JJ) or inductively (QPS) to the ring structure. A constant bias applied to the center of the ring provides the symmetry breaking (effective) magnetic field, and no microwave or rf bias is required. We find that this design offers high isolation even when taking into account fabrication imperfections and environmentally induced bias perturbations and find a bandwidth in excess of 500 MHz for realistic device parameters.Comment: 10 pages, 11 figures, including supplementary material - published as "Passive on-chip, superconducting circulator using rings of tunnel junctions

    Ledoux-Convection in Protoneutron Stars --- a Clue to Supernova Nucleosynthesis?

    Get PDF
    Two-dimensional hydrodynamical simulations of the deleptonization of a newly formed neutron star were performed. Driven by negative lepton fraction and entropy gradients, convection starts near the neutrinosphere about 20-30 ms after core bounce, but moves deeper into the protoneutron star, and after about one second the whole protoneutron star is convective. The deleptonization of the star proceeds much faster than in the corresponding spherically symmetrical model because the lepton flux and the neutrino luminosities increase by up to a factor of two. The convection below the neutrinosphere raises the neutrinospheric temperatures and mean energies of the emitted neutrinos by 10-20%. This can have important implications for the supernova explosion mechanism and changes the detectable neutrino signal from the Kelvin-Helmholtz cooling of the protoneutron star. In particular, the enhanced electron neutrino flux relative to the electron antineutrino flux during the early post-bounce evolution might solve the overproduction problem of certain elements in the neutrino-heated ejecta in models of type-II supernova explosions.Comment: 17 pages, LaTeX, 8 postscript figures, uses epsf.sty. To appear in ApJ 473 (Letters), 1996 December 1

    Improving the accuracy of 1D SNMR surveys using the multi-central-loop configuration

    Get PDF
    Temeljna svrha i cilj ovoga rada bilo je ispitati koliko su potrošači skloni dijeljenju svojih turističkih iskustva s drugima te putem kojih medija. Osim navedenog, drugi cilj provedenog istraživanja bilo je utvrditi koliko su potrošačima važna iskustva i komentari drugih posjetitelja u procesu donošenja odluke o kupnji. Istraživanje je provedeno metodom ispitivanja, a kao instrument korišten je anketni upitnik sastavljen od 22 pitanja. Utvrđivanjem problema istraživanja, postavljene su tri hipoteze. Od tri hipoteze, u potpunosti je dokazana samo prva koja pretpostavlja da su potrošačima tuđa iskustva i komentari od velike važnosti kod planiranja i odabira putovanja. Druga hipoteza je djelomično potvrđena, tj. potvrđeno je da su potrošači skloni dijeliti svoja iskustva s drugima u situaciji kada su jako zadovoljni dok s druge strane nije potvrđeno kako su potrošači skloni dijeliti svoja iskustva u situaciji kada su nezadovoljni uslugom ili proizvodom. Na kraju, potvrđena je i treća hipoteza koja pretpostavlja kako su potrošači skloni dijeljenju vlastitog turističkog iskustva putem više društvenih medija, iako je utvrđeno kako najveći broj ispitanika ne dijeli svoja turistička iskustva. Istraživano je i mišljenje ispitanika o turističkoj destinaciji iz snova, a iznenađujuće, najveći broj ispitanika je navelo hrvatske destinacije kao svoje destinacije iz snova kao i one koje su im dosada pružile najnezaboravnije turističko iskustvo. Potrebno je provesti detaljnija istraživanja kako bi se detaljnije istražilo novije društvene medije koji su dostupni potrošačima za dijeljenje svog iskustva

    Collective Dynamics of Random Polyampholytes

    Full text link
    We consider the Langevin dynamics of a semi-dilute system of chains which are random polyampholytes of average monomer charge qq and with a fluctuations in this charge of the size Q1Q^{-1} and with freely floating counter-ions in the surrounding. We cast the dynamics into the functional integral formalism and average over the quenched charge distribution in order to compute the dynamic structure factor and the effective collective potential matrix. The results are given for small charge fluctuations. In the limit of finite qq we then find that the scattering approaches the limit of polyelectrolyte solutions.Comment: 13 pages including 6 figures, submitted J. Chem. Phy

    Improving the accuracy of 1D SNMR surveys using the multi-central-loop configuration

    Get PDF
    A multi-central loop configuration has been studied through forward and inverse modelling of synthetics and real data. This set-up takes advantage of the multichannel features of the NMR device and consists of using several (2 to 3) additional receiver loops displayed concentrically with the main transmitter/receiver loop, which all record the NMR signal simultaneously within a single acquisition. If the loop diameters are chosen appropriately, the kernel sensitivity distributions for each receiver loop can show complementary features. Inverting simultaneously the data sets obtained through each different receiver loop can then enhance the accuracy of the final model. To do so, a 1D QT inversion scheme in the frequency domain dedicated to the inversion of multiple data sets is being used. One challenging feature is to adapt the regularization of the inverse process so as to handle correctly the noise originating from different data sets. The efficiency of this multi-central loop acquisition set-up and procedure is being assessed through the forward and inverse modelling of several scenarios implying varying aquifer characteristics. Finally a field case is being presented that was conducted on a low noise level site located in Germany, where conditions were favourable to the implementation and testing of circular multi-central loop configurations.We also introduce a new method for determining NMR parameters, named the prediction-focused-approach (PFA), that is based on statistical analysis of a large number of simple models. We observe, using synthetic examples, that the effciency of the method benefits from the use of the multi-central-loop configurations

    Determination of stiffness and higher gradient coefficients by means of the embedded atom method: An approach for binary alloys

    Get PDF
    For a quantitative theoretical description of phase separation and coarsening reliable data of stiffness constants and the so called Higher Gradient Coefficients (HGCs) are required. For that reason pair potentials of the Lennard-Jones type were used in [1] to provide a theoretical tool for their quantitative determination. Following up on this work these quantities are now calculated by means of the Embedded-Atom Method (EAM), a recently developed approach to describe interatomic potentials in metals. This is done, first, to achieve a better agreement between predicted and experimentally observed stiffness data as well as to avoid artifacts, such as the Cauchy paradox, and, second, to increase the trustworthiness of the HGCs for which experimental data are rarely available. After an introduction to the fundamentals of EAM it is outlined how it can be used for calculating stiffness constants and HGCs. In particular, Johnson's modification of EAM for nearest neighbor interactions [3] is applied to present explicit numerical results for a case study alloy, Ag-Cu, which has a ``simple" face-centered-cubic crystal structure and where it is comparatively easy to obtain all the required analysis data from the literature and to experimentally compare the predictions of mechanical data

    Sialic Acid Mutarotation Is Catalyzed by the Escherichia coli β-Propeller Protein YjhT

    Get PDF
    The acquisition of host-derived sialic acid is an important virulence factor for some bacterial pathogens, but in vivo this sugar acid is sequestered in sialoconjugates as the {alpha}-anomer. In solution, however, sialic acid is present mainly as the β-anomer, formed by a slow spontaneous mutarotation. We studied the Escherichia coli protein YjhT as a member of a family of uncharacterized proteins present in many sialic acid-utilizing pathogens. This protein is able to accelerate the equilibration of the {alpha}- and β-anomers of the sialic acid N-acetylneuraminic acid, thus describing a novel sialic acid mutarotase activity. The structure of this periplasmic protein, solved to 1.5Å resolution, reveals a dimeric 6-bladed unclosed β-propeller, the first of a bacterial Kelch domain protein. Mutagenesis of conserved residues in YjhT demonstrated an important role for Glu-209 and Arg-215 in mutarotase activity. We also present data suggesting that the ability to utilize {alpha}-N-acetylneuraminic acid released from complex sialoconjugates in vivo provides a physiological advantage to bacteria containing YjhT

    Influence of external flows on crystal growth: numerical investigation

    Full text link
    We use a combined phase-field/lattice-Boltzmann scheme [D. Medvedev, K. Kassner, Phys. Rev. E {\bf 72}, 056703 (2005)] to simulate non-facetted crystal growth from an undercooled melt in external flows. Selected growth parameters are determined numerically. For growth patterns at moderate to high undercooling and relatively large anisotropy, the values of the tip radius and selection parameter plotted as a function of the Peclet number fall approximately on single curves. Hence, it may be argued that a parallel flow changes the selected tip radius and growth velocity solely by modifying (increasing) the Peclet number. This has interesting implications for the availability of current selection theories as predictors of growth characteristics under flow. At smaller anisotropy, a modification of the morphology diagram in the plane undercooling versus anisotropy is observed. The transition line from dendrites to doublons is shifted in favour of dendritic patterns, which become faster than doublons as the flow speed is increased, thus rendering the basin of attraction of dendritic structures larger. For small anisotropy and Prandtl number, we find oscillations of the tip velocity in the presence of flow. On increasing the fluid viscosity or decreasing the flow velocity, we observe a reduction in the amplitude of these oscillations.Comment: 10 pages, 7 figures, accepted for Physical Review E; size of some images had to be substantially reduced in comparison to original, resulting in low qualit

    Rotational spectra of isotopic species of methyl cyanide, CH3_3CN, in their ground vibrational states up to terahertz frequencies

    Full text link
    Methyl cyanide is an important trace molecule in star-forming regions. It is one of the more common molecules used to derive kinetic temperatures in such sources. As preparatory work for Herschel, SOFIA, and in particular ALMA we want to improve the rest frequencies of the main as well as minor isotopologs of methyl cyanide. The laboratory rotational spectrum of methyl cyanide in natural isotopic composition has been recorded up to 1.63 THz. Transitions with good signal-to-noise ratio could be identified for CH3_3CN, 13^{13}CH3_3CN, CH313_3^{13}CN, CH3_3C15^{15}N, CH2_2DCN, and 13^{13}CH313_3^{13}CN in their ground vibrational states up to about 1.2 THz. The main isotopic species could be identified even in the highest frequency spectral recordings around 1.6 THz. The highest JJ' quantum numbers included in the fit are 64 for 13^{13}CH313_3^{13}CN and 89 for the main isotopic species. Greatly improved spectroscopic parameters have been obtained by fitting the present data together with previously reported transition frequencies. The present data will be helpful to identify isotopologs of methyl cyanide in the higher frequency bands of instruments such as the recently launched Herschel satellite, the upcoming airplane mission SOFIA or the radio telescope array ALMA.Comment: 13 pages, 2 figures, article appeared; CDMS links update
    corecore