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AbstratFor a quantitative theoretial desription of phase separation and oarsening reliable dataof sti�ness onstants and the so alled Higher Gradient Coe�ients (HGCs) are required. Forthat reason pair potentials of the Lennard-Jones type were used in [1℄ to provide a theoretialtool for their quantitative determination. Following up on this work these quantities are nowalulated by means of the Embedded-Atom Method (EAM), a reently developed approahto desribe interatomi potentials in metals. This is done, �rst, to ahieve a better agreementbetween predited and experimentally observed sti�ness data as well as to avoid artifats,suh as the Cauhy paradox, and, seond, to inrease the trustworthiness of the HGCs forwhih experimental data are rarely available. After an introdution to the fundamentalsof EAM it is outlined how it an be used for alulating sti�ness onstants and HGCs. Inpartiular, Johnson's modi�ation of EAM for nearest neighbor interations [3℄ is appliedto present expliit numerial results for a ase study alloy, Ag-Cu, whih has a �simplefae-entered-ubi rystal struture and where it is omparatively easy to obtain all the requiredanalysis data from the literature and to experimentally ompare the preditions of mehanialdata.1 IntrodutionThe theoretial desription of phase separation as a onsequene of spinodal deomposition ornuleation and subsequent oarsening (Ostwald ripening) is a widely spread and ongoing researharea. Originally this form of solid-solid phase transformation was e�etively desribed in theseminal papers of Cahn and Hilliard [6℄ and Cahn [7℄. They used so alled phase �eld theoriesand derived a di�usion equation that, for the �rst time, allowed a qualitative desription of phaseseparation phenomena (�uphill� di�usion). Sine then phase �eld theories were the objets ofnumerous researh groups and investigated from di�erent points of view (e.g., [8℄, [9℄ or [10℄).In [2℄ Dreyer and Müller presented an approah for the theoretial desription of phase separationin binary alloys triggered by spinodal deomposition and followed by oarsening. It is based on theevaluation of the dissipation inequality by methods of Rational Thermodynamis. As a result oftheir onsiderations an extended di�usion equation was formulated representing a generalizationof the well-known Cahn-Hilliard equation [11℄. It reads:
ρ0
∂c

∂t
+
∂Ji
∂Xi

= 0 (mass balance). (1)Here c = c̃(Xi, t) represents the mass onentration in the material as a funtion of refereneposition Xi and time t. Furthermore ρ0 is the mass density of the alloy in its (liquid) referenestate. The (extended) di�usion �ux Ji ombines the in�uenes of onentration gradients, surfae
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tensions, and mehanial strains and an be written as follows (f., Appendix A):
Ji = − ρ0Mij
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∂2εmn
∂Xk∂Xl

)

. (2)The symbolMij denotes the mobility matrix and an be linked to di�usion oe�ients ommonlyused in Fik's �rst law, ψ0 = ψ̃0(c, T, εkl) stands for the Gibbs free energy of an equivalenthomogeneous system with mass onentration c, and akl = ãkl(c, T, εkl), bkl = b̃kl(c, T, εkl), and
Akl = ∂akl

∂c + bkl being the so-alled Higher Gradient Coe�ients (HGCs) taking onentrationgradients into aount.For a quantitative assessment of the di�usion proess realisti material data are required, i.e.,in partiular the material parameters of the binary mixture ρ0, Mij, ψ0, Akl, akl, bkl and Cklmnmust be spei�ed. Note that, for a presribed external load, the sti�ness onstants Cklmn are, inthe simplest ase, ombined with the strains εkl aording to Hooke's law.In the present paper we onsider a binary alloy A-B
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Figure 1: Spinodal deomposition in eu-teti Ag-Cu after various heat treatmentsat 1000 K; a) 0h, b) 5h, ) 20h and d) 40h;dark: Cu-rih (β), light: Ag-rih (α), sale:1:1000

below its ritial temperature (melting point). Usu-ally suh systems onsist of two or more phases, whihdi�er in their omposition, i.e., in the onentrationsof the omponents cA or cB = (1 − cA), respetively.For instane in pure solid mixtures below the eute-ti temperature one an observe two di�erent phases,the α-phase (A-rih) with the equilibrium onentra-tion cα and the β-phase (B-rih) with cβ , f., Figure 1.Furthermore phase �eld theories are haraterized by�smoothïnterfaes between the α- and β-phases (in on-tradition to sharp interfaes), i.e., a phase boundaryallowing for a ontinuous hange between the equilib-rium onentrations cα and cβ . Therefore it is reason-able to onentrate on the material data of, �rst, the
α-phase, seond, the β-phase and, third, of the phaseboundary.The aim of this paper is providing a theoretial ap-proah for the determination of the sti�ness Cklmn andthe higher gradient oe�ients akl, bkl and Akl of thedi�erent phases in binary alloys below Teut. This ispartiularly useful in the ase of the HGCs sine there is a onsiderable lak of data in literature.The approah is based on the evaluation of interatomi potentials and allows for a quantitativealulation of these material data in order to perform omputer simulations based on the equa-tions (1-2). With respet to the material data within the phase boundary a linear interpolationas follows:

Ξ(c) = Θ(c)Ξα +
(
1 − Θ(c)

)
Ξβ , Θ(c) =

cβ − c

cβ − cα
(shape function) , (3)between the material data Ξα = {Cαklmn, Aαkl, aαkl} and Ξβ = {Cβklmn, A

β
kl, a

β
kl} of the equilibriumphases an be performed. Consequently it only remains to speify Ξα/β . However, this linear2



approah represents only a �rst approximation, and it is more desirable to �nd the generaldependene Ξ = Ξ̃(c). Then the interpolation of Eq (3) beomes redundant.Atomisti arguments for the alulation of sti�ness oe�ients as well as higher gradient oef-�ients of Ag-Cu have already been presented by Dreyer and Müller in [1℄. However, problemsarose already during the predition of the sti�ness onstants of the pure substanes, CAg
klmn and

CCu
klmn, respetively. Due to the use of pair potentials (Lennard-Jones potentials) the Cauhyparadox (C1122 = C2323) ould a priori not be avoided and, onsequently, the deviation fromexperimental data was onsiderable. Moreover, for alloys showing a higher degree of anisotropythan ubi rystal struture (e.g., Sn-Pb, BCT-struture) negative shear moduli were obtained,[1℄.Consequently the predited HGCs seemed also questionable and alternative atomisti methodsshould be used that avoid the aforementioned shortomings. The Embedded-Atom Method(EAM) is suh a tehnique. It is a powerful, semi-empirial approah that allows to apture thestate of energy of an atomi system reasonably well. It was developed in the eighties by Daw andBaskes, [12℄ and [13℄, and onsiderably improves the quality of data when prediting physialproperties of alloys, espeially for those of the FCC type.In the following setion we want to give a brief introdution to the general idea of EAM and tothe underlying assumptions. After that we onentrate on the analyti EAM-model proposed byJohnson, [3℄, whih holds for nearest neighbor interations. It is shown how the expression forthe energy an be evaluated for binary alloys to obtain atomisti relations for the sti�ness andthe higher gradient oe�ients. In the last part of the paper we onsider the brazing binary alloyAg-Cu, whih has a simple FCC-struture. In partiular, we illustrate the �tting proedure andpresent results with respet to the elasti onstants and HGCs. Finally we onstrut the solidpart of the phase diagram in order to emphasize the trustworthiness of the predited values.2 Introdution to EAM2.1 Basi onepts of EAMThe priniple of EAM is illustrated in Figure 2. If e�ets of lattie dynamis are ignored theenergy of a solid is exlusively given by stati atomi interations. Unlike during the use ofpair-potentials1 the mathematial key to EAM onsists of introduing a nonlinear funtion Fα =

F̃α(ρ̄α) in the energy expression for atom α, in addition to the pairwise-interation term:
Eα =

1

2

∑

β

(β 6=α)

φαβ(rαβ) + Fα(ρ̄α) where ρ̄α =
∑

β

(β 6=α)

ρβ(r
αβ). (4)

Fα is known as the embedding funtion and ρ̄α is the (onstant) eletron density at the position
rαi of atom α due to all neighbors β. The �rst term in (4)1 refers to interations between the nuleiand the seond to atom-eletron interations. This type of separation was proposed by Daw andBaskes and an be justi�ed by quantum-mehanial arguments [12, 13℄. The ontribution to theeletron density by the neighbor β, ρβ , is a funtion of the salar distane rαβ between atom α1Here the energy Eα of an partile (atom) α is given by Eα = 1

2

P

β(α6=β) ϕαβ(rαβ), where ϕαβ denotes thepairwise interation potential between the atoms α and β and depends only upon the radial distane rαβ between
α and β. 3



and the nuleus of β. Summation of the ontributions from all neighbors yields ρ̄α, whih anbe interpreted as a onstant bakground eletron density of a homogeneous eletron gas. Thus
ρ̄α denotes the resulting eletron density, whih is �felt� by atom α due to the presene of itsneighbors β.
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Figure 2: The general priniple of the EAM as proposed by Daw and Baskes [12, 13℄The embedding funtion, Fα(ρ̄α), an be interpreted as the energy required to inorporate anatom α in a homogeneous eletron gas with the onstant eletron density ρ̄α. Note that thefuntional form of Fα depends only on the type of the (embedded) atom α and the argument of
Fα refers to the eletron density of the medium in whih atom α is embedded.
φαβ = φ̃αβ(rαβ) haraterizes the (purely repulsive) interations between the nulei of atom αand β. It depends on the salar distane rαβ between α and β and is, aording to [3℄, a positive,monotonially dereasing funtion. 4



In summary we may say that in order to determine the energy Eα of a partile α in a binary alloyA-B it is required to know the following quantities: FA, FB, ρA, ρB, φAA, φBB, and φAB. Withthe exeption of φAB all of these funtions an easily be related to (marosopi) mehanial andalorimetri data of the pure substanes A and B. In order to obtain φAB a model will be usedthat relates this quantity to the interations φAA and φBB of the pure substanes.In the following setions it is assumed that every atom in the solid interats only with its nearestneighbors (�rst shell). This assumption leads to a speial modi�ation of EAM introdued byJohnson in [3℄.2.2 Johnson's analyti nearest-neighbor modelConsider Figure 3 and reall that in an FCC-lattie an arbitrary atom α is surrounded byexatly twelve nearest neighbors from whih it is separated by the distane rαβ ≡ r = a/
√

2 (or,in equilibrium, R = ae/
√

2), where a denotes the lattie parameter.
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Figure 3: The nearest neighbors for an arbitrary atom α in a FCC-lattieIn order to obtain Eα in Eq (4) it is neessary to speify φαβ , Fα and ρβ (⇒ ρ̄α). More spei�allywe have to hoose a suitable funtional form. In partiular for a binary alloy A-B the funtions
FA, FB, ρA, ρB, φAA, φBB, and φAB must be spei�ed. For that reason Johnson proposed in [3℄to use the following form2 for ρA/B and φAA/BB (where the indies A and B of the two atomspeies have been omitted for simpliity):

ρ(r) = ρe exp
[

−β
( r

R
− 1
)]

, φ(r) = φe exp
[

−γ
( r

R
− 1
)]

. (5)The four parameters ρe, φe, β, and γ depend on the type of the atom and will be determined usinginformation from both pure substanes, A and B. Furthermore the nearest neighbor distane Rmust be known or alulated from the lattie parameter ae as indiated before.For the interation φAB between nulei of di�erent atom types Johnson used the following form:
φAB(r) =

1

2

[
ρB(r)

ρA(r)
φAA(r) +

ρA(r)

ρB(r)
φBB(r)

]

. (6)2Espeially the form of the atomi eletron density ρ is borrowed from atoms with isotropi s-orbitals. This(for speial ases) unrealisti assumption is later orreted by the �tting proedure.5



This relation an easily be quanti�ed using data for the pure substanes A and B.Finally it remains to speify FA and FB. For this purpose a universal funtion of state is used assuggested by Rose et al. [14℄. Aording to them the partile-spei� energy for a broad rangeof materials an be approximated by:
E(a) = −Esub

[
1 + a∗(a)

]
e−a

∗(a) , a∗(a) =

(
a

ae
− 1

)(
Esub

9κΩ0

)− 1
2

, (7)where Esub denotes the sublimation energy per atom of the material, κ is the ompressibilityand Ω0 is the volume oupied by an atom in the lattie at equilibrium. Hene Ω0 is a funtionof ae and, for an FCC-lattie, an be obtained from:
Ω0 =

a3
e

4
, (8)beause there are four atoms in the unit ell (8 × 1
8 atoms in the orner; 6 × 1

2 atoms on thefaes). All quantities in Eq (7) an be found in the literature or databases, e.g., [15℄.By ombining the relation E(a) = Eα with Eq (4) and substituting a = r
√

2 and ae = R
√

2 bythe inverse relation resulting from Eq (5), namely:
ln

ρ̄

ρ̄e = −β
( r

R
− 1
)

,
φ
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(
ρ̄

ρ̄e) γ
β (9)the following form is obtained for F :

F (ρ̄) = −Esub
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1 − α

β
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(
ρ̄

ρ̄e

)](
ρ̄

ρ̄e

)α
β

− 6φe

(
ρ̄
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) γ
β

and α = 3

(
κΩ0

Esub

)1
2

. (10)For this result the relations:
ρ̄(r) =

∑

β

ρ(r) = 12ρ(r) ,
1

2

∑

β

φ(r) =
1

2
12φ(r) = 6φ(r) (11)were used whih hold for FCC rystals and nearest-neighbor-interations. Note that the expliitform of F = F̃ (ρ̄) only arises beause of the speial funtional forms in Eq (5), whih allow aninversion from r to ρ̄.In order to determine all relevant funtions for a binary alloy in Eq (4) it is neessary to know thevarious material parameters introdued in Eqns (5) and (10), namely α, β, γ, φe, and ρ̄e = 12ρefor the pure substanes A and B. How to obtain these quantities through a �tting proedure willbe explained in one of the following setions.3 Evaluation of the EAM energy expression3.1 Lattie deformation and strain measuresWe onsider an arbitrary lattie, where the equilibrium state is denoted by the undeformed(referene) on�guration. In this ase the position of an arbitrary atom α is given by its refereneposition vetor Xα

i . Analogously the atom of the deformed lattie on�guration beyond the6



equilibrium is haraterized by the urrent position vetor xαi = Xα
i + ξαi , where ξαi denotesthe displaement of atom α from his referene position. In the same manner all lattie atoms

β, γ, δ, . . . are haraterized, i.e., the onglomerate of all referene positions (Xα
i ,X

β
i ,X

γ
i , . . .)and urrent positions (xαi , x

β
i , x

γ
i , . . .) ontains the whole information about the undeformed ordeformed lattie, respetively. Moreover, the distane between two arbitrary atoms α and β iswritten as Rαβi ≡ Xβ

i − Xα
i or rαβi ≡ xβi − xαi (also note Figure 4 for an illustration of thesituation. Consequently the following relations an easily be obtained:
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Figure 4: The di�erent lattie vetors and their notation
xαi = Xα

i + ξαi , xβi = Xβ
i + ξβi , (12)

rαβi = xβi − xαi = Xβ
i −Xα

i + ξβi − ξαi = Rαβi + ξβi − ξαi . (13)By performing the so alled mean �eld limit , i.e., by introduing a ontinuous displaementfuntion ui = ũi(X
α
j ) instead of the disrete displaements ξαi , a Taylor expansion [1℄ yields:
ξαi = ui(X

α
j ) ≡ ui(Xj), (14)

ξβi = ui(X
β
j ) = ui(X

α
j +Rαβj ) = ui(Xj) +

∂ui
∂Xj

Rαβj + . . . , (15)
⇒ rαβi = Rαβi +

∂ui
∂Xj

Rαβj = (δij +Hij)R
αβ
j ≡ FijR

αβ
j . (16)Here Fij = δij +Hij denotes the oe�ients of the deformation gradient and Hij = ∂ui

∂Xj
standsfor oe�ients of the displaement gradient.In order to identify the elasti onstants in atomisti theories numerous publiations based oninteratomi interations (e.g., two-body atom-atom interations) an be found, e.g., [4, 5℄. Usu-ally the authors onsider the total energy of the N (deformed) lattie bonds, Φ(r1i , . . . , r
N
i ), asa funtion of the urrent distane vetor between the atoms and expand the energy in a Taylorseries as follows, [4℄:

Φ(r1i , . . . , r
N
i ) = Φ(R1

i +HijR
1
j , . . . , R

N
i +HijR

N
j )

= Φ(R1
i , . . . , R

N
i ) +

∑

b

∂Φ

∂rbj

∣
∣
∣
∣
∣
Rb

j

ϑbj +
1

2

∑

b

∂2Φ

∂rbk∂r
b
l

∣
∣
∣
∣
∣
Rb

k
,Rb

l

ϑbkϑ
b
l + . . . . (17)In this equation the index b identi�es the bond between the di�erent atoms α and β and thesymbol ϑbi denotes the oe�ients of the di�erene vetor of the displaements of α and β, namely7



ξβi − ξαi ≈ ∂ui

∂Xj
Rαβj aording to ϑαβi in Figure 4. Thus Eq (17) an be reformulated as:

Φ(r1i , . . . , r
N
i ) = Φ(R1

i , . . . , R
N
i ) +

+Hij

∑

b

∂Φ

∂rαβi

∣
∣
∣
∣
∣
Rαβ

i

Rαβj +
1

2
HijHkl

∑

b

∂2Φ

∂rαβj ∂rαβl

∣
∣
∣
∣
∣
Rαβ

j ,Rαβ
l

Rαβi Rαβk . (18)The �rst derivatives of Φ vanish at equilibrium. Therefore the total elasti energy of the lattieis represented by the seond-derivative-term of Eq (18). Substituting Hij by its symmetri part,the oe�ients of the strain tensor εij , this term an be linked to the sti�ness oe�ients Cijkl,[5℄.Unfortunately we ould not �nd a ompletely onvining argument justifying the substitution
Hij → εij and hene we want to use another strain measure in order to avoid further irritationsand misunderstandings. For this purpose we onsider the square of Eq (16):

rαβ
2

= rαβi rαβi = FijFikR
αβ
j Rαβk = CjkR

αβ
j Rαβk = Rαβ

2
+ (Cjk − δjk)R

αβ
j Rαβk

= Rαβ
2
+ 2GjkR

αβ
j Rαβk , (19)where Cjk = FijFik ≡ F

T ·F stands for the right Cauhy-Green tensor and Gjk = 1
2 (Cjk−δjk) ≡

1
2(C − I) for Green's strain tensor. By means of Gjk we an write for the energy of a lattie:

Φ(rαβ
2
) = Φ(Rαβ

2
+ 2GjkR

αβ
j Rαβk ) = Φ(Rαβ

2
)+

+2Gij
∑

b

∂Φ

∂rαβ
2

∣
∣
∣
∣
∣
Rαβ2

Rαβi Rαβj +
4

2
GijGkl

∑

b

∂2Φ

∂rαβ
2
∂rαβ

2

∣
∣
∣
∣
∣
Rαβ2

Rαβi Rαβj Rαβk Rαβl + . . . . (20)This equation an be linked to the sti�ness oe�ients without any further substitutions. How-ever, the underlying interatomi potentials have to be reformulated in terms of rαβ2.3.2 Equilibrium ondition and sti�ness oe�ientsAording to Setion 2 the EAM energy expression of the whole system is given by the sum ofthe energies of all atoms in the system, Etot =
∑

αEα, where Eα is given by Eq (4). Beause
φαβ, ρβ and ρ̄α only depend on the salar distane rαβ between α and β it is also possible touse rαβ2 for the argument. The orresponding funtions are φ̂ =

˜̂
φ(rαβ

2
) and ρ̂β = ˜̂ρβ(r

αβ2
) andone an write:

Etot =
∑

α

Eα =
1

2

∑

α,β

(β 6=α)

φ̂αβ(rαβ
2
) +

∑

α

F̂α(ˆ̄ρα) and ˆ̄ρα =
∑

β

(β 6=α)

ρ̂β(r
αβ2

). (4a)For onveniene we will omit the irum�exes ˆ in the following setions. φαβ, ρβ and ρ̄α areimpliitly referred to the argument rαβ2. The individual energy ontributions of Eq (4a) an beexpanded in a Taylor series at equilibrium (undeformed state). The following steps seem worthmentioning:
φαβ(rαβ

2
) = φαβ(Rαβ

2
+ 2GijR

αβ
i Rαβj ) =

= φαβ(Rαβ
2
) + 2φαβ

′
(Rαβ

2
)GijR

αβ
i Rαβj + 2φαβ

′′
(Rαβ

2
)GijGklR

αβ
i Rαβj Rαβk Rαβl . (21)8



In an analogous manner one obtains:
ρβ(r

αβ2
) = ρβ(R

αβ2
) + 2ρ′β(R

αβ2
)GijR

αβ
j Rαβj + 2ρ′′β(R

αβ2
)GijGklR

αβ
i Rαβj Rαβk Rαβl . (22)Here the abbreviations (⋄)′(Rαβ2

) and (⋄)′′(Rαβ2
) represent the derivatives of (⋄) with respetto its argument rαβ2 evaluated at Rαβ2. Furthermore Eq (22) is of the form ρβ(r

αβ2
) = Aβ +

BβXαβ+ 1
2CβX 2

αβ with Aβ = ρβ(R
αβ2

), Bβ = ρ′β(R
αβ2

), Cβ = ρ′′β(R
αβ2

) and Xαβ = 2GijR
αβ
i Rαβj .Consequently a Taylor expansion of Fα(ρ̄α) at Aβ an be performed as follows:

Fα

(
∑

β

ρβ(r
αβ2

)

)

= Fα

(
∑

β

[

Aβ + BβXαβ +
1

2
CβX 2

αβ

])

=

= Fα

(
∑

β

Aβ

)

+
∑

β

∂Fα
∂Xαβ

∣
∣
∣
∣
Xαβ=0

Xαβ +
1

2

∑

β,γ

∂2Fα
∂Xαβ∂Xαγ

∣
∣
∣
∣
Xαβ=Xαγ=0

XαβXαγ . (23)Introduing:
Aαij =

∑

β

φαβ
′
(Rαβ

2
)Rαβi Rαβj , Bα

ijkl =
∑

β

φαβ
′′
(Rαβ

2
)Rαβi Rαβj Rαβk Rαβl , (24)

V α
ij =

∑

β

ρ′β(R
αβ2

)Rαβi Rαβj , Wα
ijkl =

∑

β

ρ′′β(R
αβ2

)Rαβi Rαβj Rαβk Rαβl (25)one an �nd the following important relation for the energy of an arbitrary atom α:
Eα =

1

2

∑

β

φαβ(Rαβ
2
) + Fα

(
ρ̄0
α

)
+Gij

[

Aαij + 2F ′
α

(
ρ̄0
α

)
V α
ij

]

+

+ GijGkl

[

Bα
ijkl + 2F ′

α

(
ρ̄0
α

)
Wα
ijkl + 2F ′′

α

(
ρ̄0
α

)
V α
ij V

α
kl

]

, (26)where F ′
α(ρ̄0

α) and F ′′
α(ρ̄0

α) refer the derivatives with respet to the argument at ρ̄0
α =

∑

β Aβ =
∑

β ρβ(R
αβ2

). Note that in order to derive Eq (26) the hain rule was applied as follows:
∂Fα
∂Xαβ

∣
∣
∣
∣
Xαβ=0

= F ′
α

(
∑

β

Aβ

)

·
∑

β

Bβ , (27)
∂2Fα

∂Xαβ∂Xαγ

∣
∣
∣
∣
Xαβ=Xαγ=0

= F ′′
α

(
∑

β

Aβ

)

·
∑

β,γ

BβBγ + F ′
α

(
∑

β

Aβ

)

·
∑

β

Cβ . (28)Eq (26) represents an important relation for the energy of atom α. It is valid in pure substanesas well as in solid mixtures. In the ase of solid mixtures one an �nd di�erent types of atomsin the lattie, and we have to speify the type of α and of its neighbors β in more detail.Moreover, negleting thermal expansion, it is reasonable to postulate that Eα assumes a minimumat equilibrium. Thus in Eq (26) the �rst braket on the right hand side must vanish and we �ndfor the equilibrium ondition:
Aαij + 2F ′

α

(
ρ̄0
α

)
V α
ij = 0 . (29)Furthermore it holds Eelast/V = 1

2GijCijklGkl (law of Saint-Venant-Kirhho�), [16℄. De�ning
Ωα

0 as the volume oupied by an atom α we obtain for the sti�ness oe�ients from Eq (26):
Cαijkl =

1

Ωα
0

[

2Bα
ijkl + 4F ′

α

(
ρ̄0
α

)
Wα
ijkl + 4F ′′

α

(
ρ̄0
α

)
V α
ij V

α
kl

]

. (30)9



At this point it should be pointed out that the underlying potentials of Eqns (29,30) dependon the argument Rαβ2. Taking into aount the hain rule and, in partiular, the relations
φ̂αβ

′

(Rαβ
2
) = φαβ ′

(Rαβ)
2Rαβ , ρ̂′β(Rαβ2

) =
ρ′

β
(Rαβ)

2Rαβ , φ̂αβ′′

(Rαβ
2
) = 1

4(φ
αβ ′′

(Rαβ)

Rαβ2 − φαβ ′
(Rαβ)

Rαβ3 ), and
ρ̂′′β(R

αβ2
) = 1

4(
ρ′′

β
(Rαβ)

Rαβ2 − ρ′
β
(Rαβ)

Rαβ3 ), Eqns (29,30) are in agreement with the aepted results om-muniated by Daw and Baskes in [13℄.We already indiated the importane of Eqns (26,29,30) for solid mixtures. More spei�ally thequestion arises, how to speify these equations for di�erent types of atoms. In the next setionwe want to turn the attention to binary alloys and present a proedure yielding all orrespondingequations for binary mixtures.4 EAM for binary alloys4.1 Spei�ation of the energy-expression: DPC operator and higher gradi-entsIn ontext with Eq (26) the question arises, how to exploit this energy expression for binaryalloys or, in other words, how additional information about the di�erent types of atoms anbe inorporated in this equation. In the ase of a binary alloy A-B three di�erent forms ofinterations an be distinguished: A↔A, B↔B and A↔B interations. In order to inlude theseinteration terms in Eq (26) one an use a so alled Disrete Partile Conentration (DPC)operator, introdued for example by de Fontaine, [17℄.
ŷγ =

{

0 , γ = A
1 , γ = B . (31)We now have to detail the following expressions of Eq (26): φαβ , ρ̄0

α, Fα, Aαij, Bα
ijkl, F ′

αV
α
ij ,

F ′′
αV

α
ij V

α
kl and F ′

αW
α
ijkl. For this purpose we begin the analysis with the deomposition of φαβand ρ̄0

α in the following manner:
φαβ = (1 − ŷα) (1 − ŷβ)φ

AA + ŷαŷβφ
BB +

[
(1 − ŷα) ŷβ + (1 − ŷβ) ŷα

]
φAB

= φAA +
[
ŷα + (1 − 2ŷα) ŷβ

]
φ+ (ŷα + ŷβ) φ̃ , (32)

ρ̄0
α =

∑

β

[
(1 − ŷβ) ρA + ŷβρB] =

∑

β

[
ŷβ (ρB − ρA) + ρA] (33)with the de�nitions φ = φAB − 1

2

(
φAA + φBB) and φ̃ = 1

2

(
φBB − φAA). Obviously the DCPoperator at as a �seletor� whih �hooses� the orresponding interation depending on whattypes of atoms are onsidered. If for example α and β are two A-atoms, ŷα as well as ŷβ are zeroand only the terms φAA and ρ̄0A =

∑

β ρA remain in Eq (32) and (33). In a same manner onean obtain φBB, φAB and ρ̄0B.Moreover the DCP operator an be replaed by its ontinuous ounterpart applying the mean
10



�eld limit. Thus a Taylor expansion results in:
ŷα = y(Xα

i ) ≡ y(Xi), (34)
ŷβ = y(Xβ

i ) = y(Xi +Rαβi ) = y(Xi) +
∂y

∂Xi
︸︷︷︸

=∇iy

Rαβi +
1

2

∂2y

∂Xi∂Xj
︸ ︷︷ ︸

=∇2
ijy

Rαβi Rαβj + . . . . (35)The symbols ∇iy and ∇2
ijy are referred to as higher gradients and are harateristi of phase�eld theories. After a straightforward alulation we �nd:

φαβ = φAA + 2y(1 − y)φ+ 2yφ̃+ ∇iy
[
(1 − 2y)φ+ φ̃

]
Rαβi +

1

2
∇2
ijy
[
(1 − 2y)φ+ φ̃

]
Rαβi Rαβj ,(36)

ρ̄0
α =

∑

β

ρA + y
∑

β

(ρB − ρA) + ∇iy
∑

β

(ρB − ρA)Rαβi +
1

2
∇2
ijy
∑

β

(ρB − ρA)Rαβi Rαβj (37)
= ρ̄A + yρ̄△ + (∇iy)ρ̄

△
i +

1

2
(∇2

ijy)ρ̄
△
ij (38)with the de�nitions ρ̄A =

∑

β ρA; ρ̄△ =
∑

β(ρB − ρA); ρ̄△i =
∑

β(ρB − ρA)Rαβi and ρ̄△ij =
∑

β(ρB − ρA)Rαβi Rαβj . At this point it is important to mention that for any salar funtion
f(Rαβ) depending only on the radial distane Rαβ between atom α and β the following sumvanishes: ∑

β

f(Rαβ
2
)Rαβi1 . . . RαβiN = 0 , (∀N = odd number). (39)This relation stems from the fat that in an arbitrary lattie, due to its periodi arrangement,for all vetors Rαβi a vetor −Rαβi in opposite diretion an be found (if boundary e�ets arenegleted). Thus Eqns (36,38) results in:

φαβ = φAA + 2y(1 − y)φ+ 2yφ̃+
1

2
∇2
ijy
[
(1 − 2y)φ+ φ̃

]
Rαβi Rαβj , (40)

ρ̄0
α = ρ̄A + yρ̄△ +

1

2
(∇2

ijy)ρ̄
△
ij . (41)Using Eq (38) the embedding funtion Fα(ρ̄0

α) an be also expanded into a Taylor series evaluatedat a weighted average eletron density ρ̄av = ρ̄A + yρ̄△ = (1 − y)ρ̄A + yρ̄B:
Fα(ρ̄0

α) = Fα

(

ρ̄A + yρ̄△
︸ ︷︷ ︸

=ρ̄av

+
1

2
(∇2

ijy)ρ̄
△
ij

)

= Fα
(
ρ̄av) +

1

2
F ′
α

(
ρ̄av
)
ρ̄△ij (∇2

ijy) + . . . . (42)Note that gradient terms of higher than seond order were assumed not to ontribute to theenergy of the system. Moreover, Fα itself is also deomposed analogously to Eq (33) and wewrite:
Fα(ρ̄0

α) = (1 − y)FA + yFB , (43)
FA = FA(ρ̄av)+

1

2
F ′A(ρ̄av)ρ̄△ij (∇2

ijy) . . . , FB = FB(ρ̄av)+
1

2
F ′B(ρ̄av)ρ̄△ij (∇2

ijy) . . . . (44)So the �rst two terms of the right hand side of Eq (26) are spei�ed in terms of onentrationgradients by Eqns (36) and (43-44). 11



In what follows we want to investigate the symbols Aαij , Bα
ijkl, F ′

αV
α
ij , F ′′

αV
α
ij V

α
kl and F ′

αW
α
ijklof Eq (26). Here it is worth mentioning that the produts of the last three expressions F ′

αV
α
ij ,

F ′′
αV

α
ij V

α
kl and F ′

αW
α
ijkl annot be separated and evaluated separately sine they are oupled bythe same index α. Hene the deomposition by means of the DCP-operator must be applied tothe omplete produt.The �rst two abbreviations, Aαij and Bα

ijkl, an be written in the same manner as in Eq (36):
Aαij = AA

ij + 2y(1 − y)Aφij + 2yAφ̃ij +
1

2
∇2
kly
[

(1 − 2y)Aφijkl +Aφ̃ijkl

]

, (45)
Bα
ijkl = BA

ijkl + 2y(1 − y)Bφ
ijkl + 2yBφ̃

ijkl +
1

2
∇2
mny

[

(1 − 2y)Bφ
ijklmn +Bφ̃

ijklmn

] (46)with the de�nitions:
AA
ij =

∑

β

φAA′
(Rαβ

2
)Rαβi Rαβj , Aφijkl =

∑

β

φ′(Rαβ
2
)Rαβi Rαβj Rαβk Rαβl , (47)

Aφ̃ijkl =
∑

β

φ̃′(Rαβ
2
)Rαβi Rαβj Rαβk Rαβl , BA

ijkl =
∑

β

φAA′′
(Rαβ

2
)Rαβi Rαβj Rαβk Rαβl ,(48)

Bφ
ijklmn =

∑

β

φ′′(Rαβ
2
)Rαβi . . . Rαβn , Bφ̃

ijklmn =
∑

β

φ̃′′(Rαβ
2
)Rαβi . . . Rαβn . (49)Analogously to Eq (43) the following relations hold:

F ′
α(ρ̄

0
α)V α

ij = (1 − y)F ′A V α
ij

∣
∣
∣
α=A + yF ′B V α

ij

∣
∣
∣
α=B , (50)

F ′
α(ρ̄0

α)Wα
ijkl = (1 − y)F ′A Wα

ijkl

∣
∣
∣
α=A + yF ′B Wα

ijkl

∣
∣
∣
α=B , (51)

F ′′
α (ρ̄0

α)V α
ij V

α
kl = (1 − y)F ′′A V α

ij V
α
kl

∣
∣
∣
α=A + yF ′′B V α

ij V
α
kl

∣
∣
∣
α=B . (52)The derivatives F ′

α and F ′′
α an be alulated analogously to Eqns (44). We simply inrease theorder of derivatives in these equations:
F ′A/B = F ′A/B(ρ̄av)+

1

2
F ′′A/B(ρ̄av)ρ̄△ij (∇2

ijy) , (53)
F ′′A/B = F ′′A/B(ρ̄av)+

1

2
F ′′′A/B(ρ̄av)ρ̄△ij (∇2

ijy) . (54)By ombination of Eqns (25) and (41) we �nally �nd (α = {A,B}):
V α
ij = V A

ij + yV △
ij +

1

2
(∇2

kly)V
△
ijkl , (55)

Wα
ijkl = WA

ijkl + yW△
ijkl +

1

2
(∇2

mny)W
△
ijklmn (56)with the abbreviations:

V A
ij =

∑

β

ρ′A(Rαβ
2
)Rαβi Rαβj , V △

i1,...,in
=
∑

β

[

ρ′B(Rαβ
2
) − ρ′A(Rαβ

2
)
]

Rαβi1 . . . Rαβin ,(57)
WA
ijkl =

∑

β

ρ′′A(Rαβ
2
)Rαβi . . . Rαβl , W△

i1,...,in
=
∑

β

[

ρ′′B(Rαβ
2
) − ρ′′A(Rαβ

2
)
]

Rαβi1 . . . Rαβin (58)and all terms of Eq (26) are now spei�ed for a binary alloy A-B. In the following setion itis shown how these umbersome equations an be strutured in order to obtain informationregarding the equilibrium ondition, the sti�ness and the higher gradient oe�ients.12



4.2 Equilibrium ondition, sti�ness and higher gradient oe�ientsBy ombination of Eq (26) with Eqns (40, 43, 44, 45, 46, 50-56) and by means of the de�nitions:
gAA =

∑

β

φAA , gφ =
∑

β

φ , gφ̃ =
∑

β

φ̃ , (59)
gφij =

∑

β

φRαβi Rαβj , gφ̃ij =
∑

β

φ̃Rαβi Rαβj . (60)we obtain for the energy of atom α:
Eα =

1

2
gAA + y(1 − y)gφ + ygφ̃ +

1

4
(∇2

ijy)
[

(1 − 2y)gφij + gφ̃ij

]

+

+FA + y
(

FB − FA)+
1

2
(∇2

ijy) ρ̄
△
ij

[

F ′A + y
(

F ′B − F ′A)]+

+Gij

{

AA
ij + 2y(1 − y)Aφij + 2yAφ̃ij +

1

2
(∇2

kly)
[

(1 − 2y)Aφijkl +Aφ̃ijkl

]

+

+2
(

V A
ij + yV △

ij

)(

F ′A + y(F ′B − F ′A)
)

+

+(∇2
kly)

[

V △
ijkl

(

F ′A + y(F ′B − F ′A)
)

+ ρ̄△kl

(

V A
ij + yV △

ij

)(

F ′′A + y(F ′′B − F ′′A)
)]
}

+

+
1

2
GijGkl

{

2BA
ijkl + 4y(1 − y)Bφ

ijkl + 4yBφ̃
ijkl + (∇2

mny)
[

(1 − 2y)Bφ
ijklmn +Bφ̃

ijklmn

]

+

+4
(

WA
ijkl + yW△

ijkl

)(

F ′A + y(F ′B − F ′A)
)

+

+2(∇2
mny)

[

W△
ijklmn

(

F ′A + y(F ′B − F ′A)
)

+ ρ̄△mn

(

WA
ijkl + yW△

ijkl

)(

F ′′A + y(F ′′B − F ′′A)
)]

+

+4
(

V A
ij + yV △

ij

)(

V A
kl + yV △

kl

)(

F ′′A + y(F ′′B − F ′′A)
)

+

+2(∇2
mny)

[

V △
klmn

(

V A
ij + yV △

ij

)(

F ′′A + y(F ′′B − F ′′A)
)

+ V △
ijmn

(

V A
kl + yV △

kl

)

×

×
(

F ′′A + y(F ′′B − F ′′A)
)

+ ρ̄△mn

(

V A
ij + yV △

ij

)(

V A
kl + yV △

kl

)(

F ′′′A + y(F ′′′B − F ′′′A )
)]
} (61)where FA/B and all derivatives of FA/B depend on the argument ρ̄av !!!Following Cahn and Hilliard in [6℄ and Dreyer and Müller in [2, 11℄ the Gibbs free energy density

ψ of a two-omponent system with an inhomogeneous mass-onentration pro�le c(xi, t) an beharaterized by the equation (without eigenstrains and thermal expansion):
ψ = ψonf(c,Gij) − akl(c,Gij)∇2

klc+ bkl(c,Gij)(∇kc)(∇lc) . (62)The �rst term denotes the on�gurational part of ψ and represents the Gibbs free energy den-sity of the orresponding system with a homogeneous onentration pro�le. It also inludes an�elasti� energy, ψelast, as re�eted by the strains Gkl. Therefore one an split ψonf into two13



parts:
ψonf(c,Gij) = ψ0(c) +

1

2
Gij Cijkl(c) Gkl
︸ ︷︷ ︸

=ψelast , (63)where the �rst part stands for the energy density without elasti energy ontributions. Moreoverit is important to mention that ψelast does not ontain higher gradients and, onsequently, it isreasonable to re-arrange Eq (61) as follows:
Eα =

1

2
gAA + y(1 − y)gφ + ygφ̃ + FA + y

(

FB − FA)
+

1

2
GijGkl

{

2BA
ijkl + 4y(1 − y)Bφ

ijkl + 4yBφ̃
ijkl + 4

(

WA
ijkl + yW△

ijkl

)(

F ′A + y(F ′B − F ′A)
)

+ 4
(

V A
ij + yV △

ij

)(

V A
kl + yV △

kl

)(

F ′′A + y(F ′′B − F ′′A)
)
}

+ (∇2
mny)

{

1

4

(

(1 − 2y)gφmn + gφ̃mn

)

+
1

2
ρ̄△mn

(

F ′A + y(F ′B − F ′A)
)

+
1

2
Gij

[

(1 − 2y)Aφijmn +Aφ̃ijmn + 2V △
ijmn

(

F ′A + y(F ′B − F ′A)
)

+ 2ρ̄△mn

(

V A
ij + yV △

ij

)(

F ′′A + y(F ′′B − F ′′A)
)]

+
1

2
GijGkl

[

(1 − 2y)Bφ
ijklmn +Bφ̃

ijklmn

+ 2W△
ijklmn

(

F ′A + y(F ′B − F ′A)
)

+ 2ρ̄△mn

(

WA
ijkl + yW△

ijkl

)(

F ′′A + y(F ′′B − F ′′A)
)

+ 2V △
klmn

(

V A
ij + yV △

ij

)(

F ′′A + y(F ′′B − F ′′A)
)

+ 2V △
ijmn

(

V A
kl + yV △

kl

)

×

×
(

F ′′A + y(F ′′B − F ′′A)
)

+ 2ρ̄△mn

(

V A
ij + yV △

ij

)(

V A
kl + yV △

kl

)(

F ′′′A + y(F ′′′B − F ′′′A )
)]
}

+ Gij

{

AA
ij + 2y(1 − y)Aφij + 2yAφ̃ij + 2

(

V A
ij + yV △

ij

)(

F ′A + y(F ′B − F ′A)
)
}

. (64)Equation (64) onsists of four parts (1st row; 2nd and 3rd row; 4th-10th row; last row).
• The �rst part represents the energy of an atom α in an undeformed, homogeneous (i.e.,without onentration gradients) solid, aording to ψ0 in Eq (63).
• The seond part denotes the elasti energy ψelast of a mixture with partile onentration
y.

• The third part an be related to the HGCs. Note that in Eq (64) only derivatives ∇2
klyour. A substitution to ∇2

klc will later allow the identi�ation of akl and bkl of Eq (62).
• The last part stands for the equilibrium ondition of a binary mixture A-B (minimum ofenergy), namely ∂Eα/∂Gij ∣∣Gij=0,y=yeq = 0 ⇒ AA

ij+2y(1−y)Aφij+2yAφ̃ij+2(V A
ij +yV △

ij )(F ′A+14



y(F ′B−F ′A)) = 0. By knowing the equilibrium onentration yeq this ondition an be usedto obtain the equilibrium nearest neighbor distane R in the di�erent equilibrium phases.At this point it should be mentioned that all atomisti onsiderations are performed with respetto the partile onentration y. In order to identify the quantities in Eq (2) we have to swithto mass onentrations c. Following the arguments of Appendix B we �nally �nd:
♦ equilibrium ondition:

AA
ij + 2y(c)(1 − y(c))Aφij + 2y(c)Aφ̃ij + 2

(

V A
ij + y(c)V △

ij

)(

F ′A + y(c)(F ′B − F ′A)
)

= 0 (65)
♦ Sti�ness oe�ients:

Cijkl(c) =
1

Ωα
0

[

2BA
ijkl + 4y(c)(1 − y(c))Bφ

ijkl + 4y(c)Bφ̃
ijkl + 4

(

WA
ijkl + y(c)W△

ijkl

)

×

×
(

F ′A + y(c)(F ′B − F ′A)
)

+ 4
(

V A
ij + y(c)V △

ij

)(

V A
kl + y(c)V △

kl

)(

F ′′A + y(c)(F ′′B − F ′′A)
)] (66)

♦ Higher gradient oe�ients:
amn(c,Gpq) = −δ(c) M(2)(c) Hmn(c,Gpq) , (67)
bmn(c,Gpq) = δ(c) M(1)(c) Hmn(c,Gpq) , (68)
Amn(c,Gpq) =

∂amn(c,Gpq)

∂c
+ bmn(c,Gpq) (69)with

δ(c) =
ρ0

µ0M(c)
, M(1)(c) =

2MAMB(MB −MA)

[MB − (MB −MA)c]3
, M(2)(c) =

MAMB
[MB − (MB −MA)c]2

, (70)
Hmn(c,Gpq) =

1

4

(

(1 − 2y(c))gφmn + gφ̃mn

)

+
1

2
ρ̄△mn

(

F ′A + y(c)(F ′B − F ′A)
)

+
1

2
Gij

[

(1 − 2y(c))Aφijmn +Aφ̃ijmn + 2V △
ijmn

(

F ′A + y(c)(F ′B − F ′A)
)

+ 2ρ̄△mn

(

V A
ij + y(c)V △

ij

)(

F ′′A + y(c)(F ′′B − F ′′A)
)]

+
1

2
GijGkl

[

(1 − 2y(c))Bφ
ijklmn +Bφ̃

ijklmn

+ 2W△
ijklmn

(

F ′A + y(c)(F ′B − F ′A)
)

+ 2ρ̄△mn

(

WA
ijkl + y(c)W△

ijkl

)(

F ′′A + y(c)(F ′′B − F ′′A)
)

+ 2V △
klmn

(

V A
ij + y(c)V △

ij

)(

F ′′A + y(c)(F ′′B − F ′′A)
)

+ 2V △
ijmn

(

V A
kl + y(c)V △

kl

)

×

×
(

F ′′A + y(c)(F ′′B − F ′′A)
)

+ 2ρ̄△mn

(

V A
ij + y(c)V △

ij

)(

V A
kl + y(c)V △

kl

)(

F ′′′A + y(c)(F ′′′B − F ′′′A )
)]

.(71)Reall that all atomisti quantities refer to arguments Rαβ2 and ρ̄av , respetively. In the followingsetion we onsider a spei� binary alloy and will expliitly determine the sti�ness and the highergradient oe�ients. 15



5 Appliation to the Ag-Cu systemAs a ase study we hoose y ≡ yCu (c ≡ cCu) and onsider the solid euteti binary alloy Ag-Cuat 1000 Kelvin (yeut = 0.41, ceut = 0.29, Teut ≈ 1052 Kelvin) whih, from a tehnologial pointof view, serves as a brazing material. Two di�erent equilibrium phases are observed, the α- andthe β-phase, with the equilibrium onentrations cα and cβ , respetively (f., Fig. 1). Fig. 5shows the spei� Gibbs free urve, ψ(c), at 1000 Kelvin. It was obtained from a ommerialdatabase, [18℄. By means of the ommon tangent rule onstrution the following equilibriumonentrations cα/β were determined:
cα = 0.063 ⇔ yα = 0.102 , (72)
cβ = 0.945 ⇔ yβ = 0.967 . (73)Moreover both speies Ag and Cu as well as the alloy Ag-Cu form a simple Fae-Centered-Cubi (FCC) lattie so that this material is partiularly suited for our atomisti investigationsperformed at the two equilibrium onentrations, cα/β . Before we turn to the �tting proeduresome remarks, assumptions, and interpretations in ontext with Eq (64) will be made whih arerequired for further investigations.1. Eα stands for the energy of an atom α in a binary lattie, where two types of atoms (Aand B) and three types of interations (A-A, B-B, A-B) are possible.2. Independent of these di�erent interations and atom-types it is assumed that only oneequilibrium distane R to the nearest neighbors an be found in the lattie3.3. All quantities of the right hand side of Eq (64): gAA/φ/φ̃, BA/φ/φ̃

ijkl , FA/B, F ′A/B, F ′′A/B, F ′′′A/B,
V

A/△
ij ,WA/△

ijkl , et., an be alulated from the pure substanes A and B. The �ombination�of these quantities aording to Eq (64) in terms of y, (1− y), ∇2
mny, et. is interpreted asa suitable average desribing the energy of an arbitrary partile in the mixture A-B.The seond bullet point gives rise to the question
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Figure 5: The Gibbs free energy density ψ(c)for the Ag-Cu system at 1000 Kelvin.

of how to �nd the equilibrium nearest neighbor dis-tane of a given phase (mixture) with the equilib-rium onentration ceq. In this ontext we an re-vert to the equilibrium ondition given by Eq (65),provided that ceq is known (e.g., from experiments).For the sake of transpareny we will now give anoverview of the further proedures required to ob-tain the di�erent EAM potentials, the sti�ness andthe higher gradient oe�ients. (1) The EAM po-tentials for the pure substanes Ag and Cu are �ttedin terms of Rαβ2. (2) We alulate the sti�ness o-e�ients for the pure substanes and ompare themwith experimental results (for the purpose of hek-ing). (3) An exploitation of the equilibrium ondition is performed in order to determine thenearest neighbor distanes of the α- and β-phase in Ag-Cu at 1000 K. (4) The sti�ness oe�ientsof the di�erent phases Cα/βijkl are determined and the pure-substane-limit (i.e., Ag: lim cα/β = 03This assumption an be interpreted as an �e�etive� lattie, owing the same total ohesive energy as an lattie,where three di�erent nearest neighbor distanes our, depending on the three di�erent interations.16



and Cu: lim cα/β = 1) is performed. (5) The HGCs in the α- and β-phases are alulated forthe strain-free ase (for onveniene). (6) The phase-diagram of Ag-Cu is onstruted and theresults are ompared with measurements in order to emphasize the �quality� of the preditedHGCs.5.1 The �tting proedure for Ag and CuReall the advantages of the use of potentials in terms of rαβ2 or Rαβ2, respetively as outlinedin Subsetion 3.1. For this reason we modify Johnson's funtional representation from Eq (5) asfollows:
ρ(r2) = ρe exp

[

−β
(
r2

R2
− 1

)]

, φ(r2) = φe exp

[

−γ
(
r2

R2
− 1

)]

. (74)The symbols r and R denote the nearest neighbor distane in the deformed and in the undeformedlattie and, in an FCC ensemble, are given by a√2 or ae√2 (f., Fig 3). Moreover the followingrelations hold:
ρ̄(r2) = 12ρ(r2) , ρ̄e = 12ρe ,

1

2

∑

β

φ(r2) = 6φ(r2) , 6φe ≡ Φe. (75)In order to arrive at an expliit relation for the embedding funtion F (ρ̄) analogously to Eq (10)we follow the strategy explained in Setion 2.2 and use the following inversions:
r

R
=

√

1 − 1

β
ln

ρ̄

ρ̄e ,
φ

φe =

(
ρ̄

ρ̄e) γ
β

. (76)By means of the universal funtion of state E(a) from Setion 2.2 and Eq (76) the followingresult is obtained:
F (ρ̄) = −Esub [1 + α

(√

1 − 1

β
ln

ρ̄

ρ̄e − 1

)]

exp

[

−α
(√

1 − 1

β
ln

ρ̄

ρ̄e − 1

)]

− Φe( ρ̄

ρ̄e) γ
β

. (77)with α = 3
√

κΩ0
Esub .In what follows we fous on the pure substanes Ag and Cu as well as on the binary alloy Ag-Cu(silver-opper). In the ase of the pure materials the following funtions must be determined:

φAgAg, φCuCu, ρAg (= 1/12ρ̄Ag), ρCu (= 1/12ρ̄Cu), FAg(ρ̄Ag), and FCu(ρ̄Cu). Thus for both pureomponents �ve parameters must be �tted, namely α, β, γ, φe, ρe. Consequently ten parametersare unknown. Note that the interation between an Ag and a Cu nuleus, i.e., φAgCu, followsdiretly from onsidering the pure speies Ag and Cu (f., Eq (6)). For the �tting proedure thefollowing ten experimental parameters of both substanes are used:1. Voigt average of the shear modulus G2. ompressibility κ3. sublimation energy Esub (with respet to one partile)4. (unrelaxed) vaany formation energy Euvf5. (equilibrium) lattie parameter ae
α is already given by Eq (10)2, i.e., it only remains to determine β, γ, φe, and ρe.17



Determination of φe and ρe Following Johnson in [19℄ the sublimation energy per atom(i.e., the ohesive energy) of an arbitrary atom is represented by the nulei-nulei interationswith its neighbors: Esub = 1
2 · 12 · φ(r2). Hene it follows for equilibrium:

φe =
Esub

6
. (78)From the physial point of view it is plausible to establish that ρe ∝ 1/Ω0 and ρe ∝ Esub and,onsequently, we write:

ρe =
Esub
Ω0

. (79)The last two equations represent two relations for the unknown material parameters φe und ρe.Determination of β and γ The starting point to obtain these quantities are the equationsfor the unrelaxed vaany formation energy Euvf and the Voigt average of the shear modulus
G:

Euvf = −1

2

12∑

β=1

φ(r2) −
12∑

β=1

F
[
12ρ(r2)

]
+

12∑

β=1

F
[
11ρ(r2)

]
, (80)

G =
1

5
(3C2323 + 2C∗) , C∗ =

1

2
(C1111 − C1122) (81)where C1111, C1122, and C2323 denote the elasti onstants of the forth order sti�ness matrix.These onstants are haraterized by derivatives of the energy expression of a solid (Eq. (4)).Reall that for the sti�ness Cijkl of a pure substane A (f., Eq (30)) we have:

CA
ijkl =

1

ΩA
0

[

2BAA
ijkl + 4F ′A(ρ̄0A)WA

ijkl + 4F ′′A(ρ̄0A)V A
ij V

A
kl

] (30a)with the de�nitions:
ρ̄0A =

∑

β

ρA(Rαβ
2
) , BAA

ijkl =
∑

β

φAA′′
(Rαβ

2
)Rαβi Rαβj Rαβk Rαβl , (82)

V A
ij =

∑

β

ρ′A(Rαβ
2
)Rαβi Rαβj , WA

ijkl =
∑

β

ρ′′A(Rαβ
2
)Rαβi Rαβj Rαβk Rαβl , (83)

F ′A =
∂FA
∂ρ̄A ∣∣∣∣ρ̄A=ρ̄0A , F ′′A =

∂2FA
∂ρ̄2A ∣∣∣∣ρ̄A=ρ̄0A , φAA′′

=
∂2φAA
∂(rαβ

2
)
2

∣
∣
∣
∣
rαβ2=Rαβ2

, (84)
ρ′A =

∂ρA
∂rαβ

2

∣
∣
∣
∣
rαβ2=Rαβ2

, ρ′′A =
∂2ρA

∂(rαβ
2
)
2

∣
∣
∣
∣
rαβ2=Rαβ2

, (85)where rαβ2 or Rαβ2 represent the distane between the atoms α and β and an be identi�ed with
r2 or R2 in the nearest neighbor model.Relation (30a) for the elasti onstants an be used in Eq (81)1,2. Then together with theparameterizations (74,75,77) it follows that (f., Appendix C):

G =
8

5

γ(γ − β)

Ω0
. (86)18



In a similar manner it is possible to approximate the unrelaxed vaany formation energy Euvfin Eq (80) by (f., Appendix C):
Euvf ≈ 15

4

GΩ0

γβ
= 6φe γ − β

β
. (87)The last two relations represent two equations for β and γ. As input we use the Voigt averageof the shear modulus and the unrelaxed vaany formation energy. Using now Eqs (10)2, (78),(79), (86), and (87), we an determine all parameters for Ag and Cu. The experimental datarequired during this proedure are ompiled in Table 1, [19℄:Table 1: Experimental data for Ag and Cutype of Inputatom Ω0 in 3 Esub in eV Euvf in eV Ω0κ in eV Ω0G in eVAg 17.10 2.85 1.10 11.10 3.61Cu 11.81 3.54 1.30 10.17 4.05In partiular the following values an be used to obtain the seond olumn of Table 1:

aAg = 4.09 Å , RAg = 2.89 Å , RAg2
= 8.36 Å2 (88)

aCu = 3.61 Å , RCu = 2.56 Å , RCu2
= 6.53 Å2 (89)From this data the parameters and orresponding funtions shown in Table 2 and in Figure 6were obtained. Table 2: Calulated parameters for Ag and Cuatom α β γ φe in eV ρe in eV/3 ρ̄e in eV/3Ag 5.9205 2.9799 4.1300 0.4750 0.1672 2.0064Cu 5.0849 2.9232 3.9966 0.5900 0.2998 3.5971

nuleus-nuleus interations between atoms ofthe same type nuleus-nuleus interations between atoms ofdi�erent type
19



atomi eletron-density for a silver and aopper atom embedding funtion for a silver and a opperatom

atomi energy for a silver and a opper atom Figure 6: Various funtions relevant in Eq (74,77)and the resulting atomi energy Eα for Ag and Cu.Note that in the upper right piture holds φAgCu =
φCuAg.5.2 The elasti onstants of Ag and CuWith the �tted and illustrated funtions from the last setion it beomes possible to alulatethe elasti onstants for pure Ag and Cu aording to Eq (30a). The results are ompiled inTable 3.In omparison with the results obtained by means of pair potentials [1℄ the disrepany be-tween experimental data and theoretially predited values is visibly redued and the agreementis reasonably good, the error ranging between 4.1% (CAg

1122) and 9.4% (CCu
1111). Moreover theCauhy-Paradox (C1122 = C2323) no longer exists whih is a onsiderable improvement.5.3 The alloy Ag-Cu I: Evaluation of the equilibrium onditionIn this setion we investigate the equilibrium ondition shown in Eq (65). We hoose A=Agand B=Cu and the orresponding equilibrium onentrations cα = 0.063 and cβ = 0.945 at1000 K. Eq (65) has a nontrivial solution only for the index-pair i = j sine in an FCC lattiethe following relation holds for an arbitrary salar funtion f : ∑ f(R2)RiRj = 0, (i 6= j) and

∑
f(R2)RiRi = onst, (∀i, j = {1, 2, 3}). Consequently we may plot the left side (for the index

11) of Eq (65) as shown in Figure 7, left. The point of intersetion with the absissa de�nes thenearest neighbor distanes in equilibrium of a rystal onsisting of α or β phase, respetively.On the other side it is possible to vary the onentration in the equilibrium ondition (65) anddetermine the nearest neighbor distane in equilibrium as a funtion of the onentration c. The20



Table 3: Elasti onstants for Ag and Cu in GPa. The values in parentheses are from experiments [20℄.
C

Ag
ijkl kl 11 22 33 23 31 12 C

Cu
ijkl kl 11 22 33 23 31 12

ij ij11 132.6 90.2 90.2 0 0 0 11 183.7 115.1 115.1 0 0 0(124) (94) (94) (168) (121) (121)22 90.2 132.6 90.2 0 0 0 22 115.1 183.7 115.1 0 0 0(94) (124) (94) (121) (168) (121)33 90.2 90.2 132.6 0 0 0 33 115.1 115.1 183.7 0 0 0(94) (94) (124) (121) (121) (168)23 0 0 0 42.4 0 0 23 0 0 0 68.7 0 0(46) (75)31 0 0 0 0 42.4 0 31 0 0 0 0 68.7 0(46) (75)12 0 0 0 0 0 42.4 12 0 0 0 0 0 68.7(46) (75)orresponding points of intersetion were determined for various disrete onentrations c = 0,0.05, 0.10, . . . , 0.90, 0.95, 1, f., Figure 7, right. As one an see the obtained values of R are ingood agreement with the weighed average R = (1 − c)RAg + cRCu whih is represented by theontinuous line in Figure 7, right. Espeially for the α− and β-phase we an onlude:
Rα =

√
8.202 Å = 2.864 Å , Rβ =

√
6.631 Å = 2.575 Å , (90)

Ωα
0 = 16.61 Å3

, Ωβ
0 = 12.07 Å3

. (91)

The equilibrium ondition for the α- and
β-phase (i = j) Equilibrium nearest neighbor distanes fordi�erent onentrations c.Figure 7: Illustration of the di�erent results followed from the exploitation of the equilibrium ondition(65).
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5.4 The alloy Ag-Cu II: The sti�ness oe�ientsEquation (66) allows us to obtain the sti�ness oe�ients as a funtion of the mass onentration
c. Note that for every value of c one must �rst evaluate the equilibrium ondition in order to�nd the nearest neighbor distane R in equilibrium. If R is determined for a ertain value of
c the unit ell volume Ωα

0 oupied by an atom α an be alulated. In order to investigatethe sti�ness of the di�erent phases in Ag-Cu we onsider the equilibrium onentrations cα and
cβ and analyze Eq (66) at the distanes Rα and Rβ presented in the previous setion. Theresults are ompiled in Table 4. On the other hand one an ask for the sti�ness of the alloyTable 4: Elasti onstants in GPa predited for the α- and β-phases in an Ag-Cu system at 1000 K.
C
α
ijkl kl 11 22 33 23 31 12 C

β
ijkl kl 11 22 33 23 31 12

ij ij11 135.3 92.2 92.2 0 0 0 11 181.3 115.2 115.2 0 0 022 92.2 135.3 92.2 0 0 0 22 115.2 181.3 115.2 0 0 033 92.2 92.2 135.3 0 0 0 33 115.2 115.2 181.3 0 0 023 0 0 0 43.1 0 0 23 0 0 0 66.0 0 031 0 0 0 0 43.1 0 31 0 0 0 0 66.0 012 0 0 0 0 0 43.1 12 0 0 0 0 0 66.0with an arbitrary mass onentration c. This question is equivalent to a somewhat hypothetialexperiment in whih the atoms of a pure Ag lattie are suessively replaed by Cu atoms. Forthis purpose we use the alulated equilibrium distanes R illustrated in Figure 7, right, and theorresponding onentrations values. The (disrete) values of the alulated sti�ness oe�ientsare shown as bullets in Figure 8. Obviously the pure-substane-limit is exatly ful�lled, i.e.,

the elasti onstants lead to CAg
ijkl and CCu

ijkl for c = 0 or c = 1, respetively.5.5 The alloy Ag-Cu III: The higher gradient oe�ientsIn order to alulate the higher gradient oe�ients for the strain-free ase (G = 0, for simpliity)we use the redued form of Eq (71):
Hmn(c,Gij = 0) =

1

4

[(

1 − 2y(c)
)

gφmn + gφ̃mn

]

+
1

2
ρ̄△mn

[

F ′A + y(c)
(

F ′B − F ′A)]. (92)22



Figure 8: The alulated elasti onstants for Ag-Cu as a funtion of the mass onentration c. Theontinuous line represent the linear interpolationbetween the values of pure Ag and Cu.Furthermore the following data an be ompiled for euteti Ag-Cu:
ρAg = 10490

kgm3
, ρCu = 8920

kgm3
, ρ0 = 9980.57

kgm3
, δ(c) =

ρ0

µ0M(c)
. (93)By applying cα/β and Rα/β in Eqns (67,68,92,934) one an determine the higher gradient oe�-ients aij and bij for the α- and β-phase (f., Table 5). Moreover, together with the alulatednearest neighbor distanes in equilibrium whih depend on c (Figure 7, right) we alulate aij(c)and bij(c) (f., Figure 9). Note that for an FCC rystal we have aij = bij = 0 for i 6= j and

a11 = a22 = a33 or b11 = b22 = b33, respetively.Table 5: Calulated higher gradient oe�ients for the di�erent α- and β-phases in euteti Ag-Cu.phase a11 [N℄ b11 [N℄ A11 [N℄ ∂A11/∂c [N℄
α 4.59 · 10−11 6.14 · 10−11 1.55 · 10−10 7.34 · 10−11

β 1.23 · 10−10 1.03 · 10−10 1.88 · 10−10 2.86 · 10−11For the determination of Aα/βij or (more generally) Aij(c) and the orresponding derivative onehas to �nd a losed form for the equilibrium distane Rα/β = R(cα/β) or R = R(c), respetively,�rst. Note that the derivatives ∂aij/∂c, ∂2aij/∂c
2 and ∂bij/∂c must be alulated and evaluatedat the equilibrium distanes R whih also depends on c. Here we want to use the numeriallyobtained results from Setion 5.3, i.e.,

R(c) ≈ (1 − c)RAg + cRCu . (94)Now we an evaluate Aα/βij (f., Table 5) as well as Aij(c) (f., Figure 7) and the orrespondingderivatives with respet to c. Analogously we have for FCC rystals Aij = 0 for i 6= j and
A11 = A22 = A33 for i = j.6 Constrution of the phase diagramIn order to point out the reliability of the predited sti�ness oe�ients and the HGCs we wantto alulate �nally the equilibrium partile onentrations yα/β for di�erent temperatures usingthe EAM and ompare them with experimental data. The resulting phase diagram representsthe oexisting phases in the binary alloy at di�erent temperatures.23



Figure 9: Higher gradient oe�ients alulatedfor Ag-Cu as a funtion of the mass onentration
c.From (phenomenologial) thermodynamis of mixtures it is well-known that the equilibriumonentrations of a binary mixture an be onstruted from the Gibbs free energy g(y, T ),(pressure p =onst) for a given temperature performing the Maxwell tangent onstrution.Here the derivatives of the g(y, T )-urve at the equilibrium onentrations yα/β must be identialto the slope of the ommon tangent.Starting from the atomisti point of view the Gibbs free energy g(y, T ) per atom an be identi�edaording to Eq (64) as follows:

g(y, T ) ≡ Eα − Ts =
1

2
gAA + y(1 − y)gφ + ygφ̃ + FA + y(FB − FA) − Ts

= (1 − y)
(

6φAA(R2) + FA(ρ̄av(R2)
))

+ y
(

6φBB(R2) + FB(ρ̄av(R2)
))

+

+12y(1 − y)gφ(R2) + kBT(y ln y + (1 − y) ln(1 − y)
)

. (95)Here the temperature-dependene of g(y, T ) is only haraterized by the entropi part, namelyby −Ts. Furthermore the Maxwell tangent onstrution reads:
∂g(y, T )

∂y

∣
∣
∣
y=yα

=
∂g(y, T )

∂y

∣
∣
∣
y=yβ

=
g(yβ , T ) − g(yα, T )

yβ − yα
. (96)Note that in Eq (95) all terms, i.e., gAA, gφ, gφ̃ and FA/B depend on the equilibrium nearestneighbor distane R2 whih is a funtion of the mass onentration c (.f., Eq (94)). In order to�nd R = R(y) one an use the inverse relation c = c(y) of Eq (113):

cCu ≡ c =
mCu

mCu +mAg
=

yMCu

yMCu + (1 − y)MAg
. (97)24



In a same manner one an analyze the Gibbs free energy density ψ(c, T ) = g(y(c), T )/δ(c)as a funtion of the mass onentration c. Then the resulting equilibrium onentrations arerepresented by cα/β in the phase diagram. Both approahes are equivalent and y an be trans-ferred to c through Eq (97). Here we want to investigate g(y, T ) and alulate the equilibriumonentrations yα/β as well as the aording phase diagram due to a better omparison withexperimental/literature data.Figure 10 shows the partile-spei� Gibbs free energy for the temperature 1000 Kelvin followingfrom Eq. (95) and the aording ψ-urve (1st row) as well as the relation R(y) (2nd row).

Figure 10: 1st row: The theoretial urvesof g(y, T ) and ψ(c, T ) for 1000 Kelvin inludingMaxwell's tangent (dashed line) and the on-struted equilibrium points (�lled dots). 2nd row:The equilibrium nearest neighbor distane R(y) andits deviation from the linear interpolation (dashedline).Note that the ψ-urves of Figure 5 and Figure 10 an not be diretly ompared due to di�erentzero points on the energy sale.Evaluating Eq (95) for di�erent temperatures, in partiular for 700, 800, 900, and 1000 Kelvinyields the urves illustrated in Figure 11 (1st row). Here Maxwell's tangent is removed fromthe values of g. Thus the minima of these funtions represent the equilibrium onentrationsfor the aording temperature. Note that there are also minima on the �right side� of theurve, pointed out by the zoomed right piture. Furthermore the alulated and experimentalequilibrium onentrations yα/β and cα/β are onfronted in Table 6. The resulting (theoretiallydetermined) phase diagram one an �nd in Figure 11 (2st row, left). The full diagram on theright side is the aording one obtained from MTdataTM, [18℄. A omparison of the values inTable 6 as well as the theoretial and experimental phase diagram shows that the theoretiallypredited equilibrium onentrations have qualitatively the same tendeny as the experimentalones. Furthermore the absolute values of the α-phase (left part of the phase diagram) are ingood agreement but, nevertheless, the values of the β-phase are poorly reprodued.Let us abbreviate the di�erene of Gibbs free energy g(y, T ) and Maxwells's tangent with g∗(y, T )25



Table 6: Calulated and experimental equilibrium onentrations for Ag-Cu at di�erent temperatures.The experimental data for 700, 800, 900 Kelvin are from [22℄ and for 1000 Kelvin from [15℄.Temp. predited by EAM experimental datain Kelvin yα yβ cα cβ yα yβ cα cβ700 0.024 0.999999 0.014 0.999999 0.015 0.993 0.0089 0.9882800 0.039 0.999996 0.023 0.999994 0.033 0.986 0.0197 0.9765900 0.056 0.999986 0.033 0.999976 0.063 0.976 0.0381 0.95991000 0.075 0.999957 0.045 0.999928 0.102 0.967 0.0627 0.9452

(f., Figure 11, 1st row) and the aording values of ψ(c, T ) with ψ∗(c, T ). For the investigationof the soure of deviation between the experimental and alulated equilibrium onentrationsone an now ompare g∗(y, T = 1000K) as well as ψ∗(c, T = 1000K) following from the atomistialulations and from the MTdataTM database. Moreover, it is also possible to alulate theso-alled Exess-enthalpy gex, the non-ideal heat of mixing, whih an be obtained from thefollowing relation:
g(y, T ) = yg(y = 0, T ) + (1 − y)g(y = 1, T )+

+kBT(y ln y + (1 − y) ln(1 − y)
)

+ gex(y, T ). (98)Figure 12 shows the onfronted urves for 1000 Kelvin. Obviously the ruial value that deter-mines the quality of the alulated phase diagram is the exess enthalpy gex. In partiular, itsasymmetry is the soure of the asymmetry in the phase diagram related to the solid state andits absolute values ompete with the entropi part −Ts and determines the horizontal positionof the minima of gmix. Thus values of gex that are too large lead to a shift of the minima (and,onsequently, of the equilibrium onentrations) in the viinity of y = 0 or y = 1, respetively.This fat is observable in our theoretial alulations, where the alulated gex is onsiderablylarger than the experimental urve, but, nevertheless, have the same magnitude and the samefuntional harateristis (asymmetry) as the other urves. The soure of the deviation of gexis due to the use of the alulated nearest neighbor distane R in equilibrium, a measure forthe relaxation of the lattie aused by di�erent atom-types. This value an only be as realistias the (�tted) EAM potentials, beause they enter the equilibrium ondition used to �nd R.In spite of these shortomings our phase diagram alulations, �rst, qualitatively reprodue theexperimental values and, seond, are of the same magnitude as the literature data.26



Figure 11: 1st row: The alulated Gibbs free energy g(y, T ) for the di�erent temperatures 700, 800,900, 1000 Kelvin. 2nd row, left : The alulated solid part of the phase diagram of Ag-Cu (�lled andjoined dots) vs. experimental data (un�lled dots). Right: The phase diagram generated by MTdataTM.

7 Conlusion and OutlookA ompat theory was presented whih allows for an atomisti identi�ation of mehanial,thermodynamial as well as thermo-mehanial material parameters in binary alloys. It is basedon EAM potentials and results in an energy expression for an arbitrary atom α, given by Eq(64). Undoubtedly this equation represents the entral element in the outlined proedure and isgenerally valid, i.e., it does not depend on the funtional form of the EAM-funtions.By onsidering a binary (multiphase) mixture the equilibrium (atomi) nearest neighbor distane
R, the sti�ness oe�ients, the higher gradient oe�ients, and the (temperature-depending)equilibrium onentrations of the di�erent phases an easily be alulated. Moreover it is alsopossible to determine these quantities as (ontinuous) funtions of mass or partile onentrations
c and y, respetively. Furthermore the equilibrium ondition following from Eq (64) represents theenergy-minimization-priniple and provides a theoretial tool for an estimate of lattie relaxationsdue to di�erent atom-types in the lattie.However, the main fous of this paper was the theoretial desription of the HGCs, sine sofar the ommuniated data are mostly estimated or their origin is not lear. That is why theexisting data are questionable. In order to substantiate the reliability of the predited HGCs we27



Figure 12: A omparison of the alulated
g∗(y, T = 1000K), ψ∗(c, T = 1000K), and
gex(y, T = 1000K) funtions with the aordingfuntions obtained from MTdataTM (dashed line).also determined the sti�ness oe�ients and onstruted the solid part of the phase diagram.Espeially we hose the binary alloy Ag-Cu for the illustration of the theoretial determinationof the above mentioned parameters.For the whole investigation the nearest neighbor model as proposed by Johnson [3℄ was used.This speial form onsiders a very simple funtional dependene for the EAM funtions, assum-ing only nearest neighbor interations and s-orbitals for the eletron sheath. Nevertheless, thedetermined quantities, for instane the sti�ness oe�ients, are in in good agreement with theexperimental data. Only the alulated equilibrium onentrations in the phase diagram par-tially inaurately reprodue the experimental values. It seems that Johnson's parametrizationonly allows a qualitative alulation of phase diagram data. Here one ould use other funtionalforms or extensions of Johnson's model. One possibility is to onsider more neighboring atomsas suggested by Daw and Baskes in [13℄.Moreover new modi�ations of EAM were developed in the last years in order to apply thismethod to other than FCC latties [24, 25℄. As an example the Modi�ed Embedded-AtomMethod (MEAM) allows the investigation of BCC-metals, for instane Fe. HCP strutures werealso investigated suessfully with EAM [26℄. Therefore, in priniple, it is possible to determinethe HGCs of more omplex lattie strutures using EAM/MEAM. Other appliations of theEAM, whih ould be interesting in the future are simulations and investigations of frature,plastiity behavior, impurities, surfaes or grain boundaries.In summary one an say that the predited HGCs originated from a mirosopi theory based oninteratomi interations are reliable as indiated by the quality of the sti�ness oe�ients and(despite of some deviations) by the phase diagram onstrution. Indeed, the value of Aij is loseto those found in literature (e.g., [27℄, Aij = 2 · 10−10δij N). An investigation of the in�uene ofthe alulated HGCs on phase separation and the oarsening proesses in binary alloys aordingto Eq (2) is urrently underway and will be published in a subsequent paper.Appendix A. The extended di�usion equationIn the Appendix of [2℄ Dreyer and Müller presented a derivation of an extended di�usion equa-tion by means of Rational Thermodynamis. They started from the lassial (5 �eld) partialbalane equation of mass, momentum, and internal energy using a Lagrangeian desription.Furthermore they hose the following state spae Z:

Z =

{

T, c,
∂c

∂Xi
,

∂2c

∂Xi∂Xj
, εij

} (99)28



by means of whih all onstitutive quantities (e.g., di�usion �ux Ji, heat �ux Qk, and �rst orseond Piola-Kirhhoff stress tensor, tik or Tik) follow. The balane equations beome �eldequations if the onstitutive equations are inserted, whih link the elements of the state spae tothe onstitutive quantities in a material-dependent manner. In order to take the seond law ofthermodynamis into aount Dreyer and Müller applied Liu's method [21℄. The loal entropyinequality
ρ0
dsdt +

∂φk
∂Xk

= Σ ≥ 0 (100)(s being the entropy, φk the entropy �ux, and Σ the (positive) entropy prodution density)holds for all proesses that are solutions to the �eld equations. If the balane equations areinterpreted as onstraints, i.e., multiplied by Lagrange fators Λc, Λvi , Λu and added to Eq(100) the inequality is then valid for arbitrary �elds and an be exploited. This proedure leadsto following extended di�usion equation [2℄:
ρ0
∂c

∂t
+
∂Ji
∂Xi

= 0 and Ji = −ρ0Mij
∂Λc

∂Xj
. (101)Here Λc refers to the mass balane and an be identi�ed with the hemial potential µ. Moreoverit holds in aordane with the seond law of thermodynamis, [11℄ we �nd that:

Λc ≡ µ =
∂ψ

∂c
− ∂

∂Xm

(
∂ψ

∂(∂c/∂Xm)

)

+
∂2

∂Xm∂Xn

(
∂ψ

∂(∂2c/∂Xm∂Xn)

) (102)where ψ represents the Gibbs free energy density. Following Cahn and Hilliard on p. 259 in [6℄a system with an inhomogeneous mass-onentration pro�le c(Xi, t) an be haraterized by theequation:
ψ = ψonf(c, εij) − akl(c, εij)

∂2c

∂Xk∂Xl
+ bkl(c, εij)

∂c

∂Xk

∂c

∂Xl
. (103)The last term of the right side of Eq (103) was negleted by Dreyer and Müller as well as invarious other publiations and represents a more general ase. Finally the �rst term ψonf(c, εij)is the ontribution of a solution with a homogeneous onentration pro�le and onsists of twoparts:

ψonf(c, εij) = ψ0(c) +
1

2
(εij − ε∗ij)Cijkl(εkl − ε∗kl), (104)where ψelast = 1/2(εij − ε∗ij)Cijkl(εkl − ε∗kl) denotes the energy density due to elasti, eigen- andthermal strains.In order to obtain the extended di�usion equation (2) we have to alulate the expressions ∂ψ/∂c,

−∂ψ/∂(∂c/∂Xm), and ∂ψ/∂(∂2c/∂Xm∂Xn) in Eq (102) using ψ as given by (103):
∂ψ

∂c
=
∂ψonf(c, εij)

∂c
− ∂akl(c, εij)

∂c

∂2c

∂Xk∂Xl
+
∂bkl(c, εij)

∂c

∂c

∂Xk

∂c

∂Xl
, (105)

− ∂ψ

∂(∂c/∂Xm)
= −2bml

∂c

∂Xl
,

∂ψ

∂(∂2c/∂Xm∂Xn)
= −akl. (106)

29



Consequently it follows by means of the hain rule:
− ∂

∂Xm

(
∂ψ

∂(∂c/∂Xm)

)

= −2

(
∂bml
∂c

∂c

∂Xm

∂c

∂Xl
+
∂bml
∂εrs

∂εrs
∂Xm

∂c

∂Xl
+ bml

∂2c

∂Xm∂Xl

)

, (107)
∂2

∂Xm∂Xn

(
∂ψ

∂(∂2c/∂Xm∂Xn)

)

= −
(
∂2amn
∂c2

∂c

∂Xm

∂c

∂Xn
+
amn
∂c

∂2c

∂Xm∂Xn
+

+2
∂2amn
∂c∂εrs

∂εrs
∂Xm

∂c

∂Xn
+
∂2amn
∂εopεrs

∂εop
∂Xm

∂εrs
∂Xn

+
∂amn
∂εrs

∂2εrs
∂Xm∂Xn

) (108)By applying the results of Eqns (105-108) as well as the de�nition:
Aij =

∂aij
∂c

+ bij (109)to Eq (102) the following relation is obtained:
µ =

∂ψonf
∂c

− 2Akl
∂2c

∂Xk∂Xl
− ∂Akl

∂c

∂c

∂Xk

∂c

∂Xl

−2
∂Akl
∂εmn

∂c

∂Xk

∂εmn
∂Xl

− ∂2akl
∂εopεmn

∂εop
∂Xk

∂εmn
∂Xl

− ∂akl
∂εmn

∂2εmn
∂Xk∂Xl

. (110)The ombination of Eq (110) and Eq (101)2 results in Eq (2). The quantities aij , bij and Aijare alled Higher Gradient Coe�ients (HGCs) and an be identi�ed with the quantities −κ1,
κ2 and κ introdued by Cahn and Hilliard in [6℄ on p. 259.Appendix B. Conversion of partile to mass onentrationThe total Gibbs free energy of an equilibrium phase γ follows by summation from Eq (64):

Gγ =
∑

α∈γ

Eα − TSγ , Sγ = −kB∑
α∈γ

[y ln y + (1 − y) ln(1 − y)] ,

Eα
(64)
=

1

2
gAA + y(1 − y)gφ + ygφ̃ + FA + y(FB − FA) +

+
1

2
GijGkl

{
. . .
}

ijkl
(y) + (∇2

mny)
{
. . .
}

mn
(y) , (111)where {. . .}ijkl and {. . .}mn represent the expressions within the brakets of the seond and thirdblok in Eq (64). Furthermore kB denotes Boltzmann's onstant and TSγ the entropi part of

Gγ . Moreover, the sum is arried out with respet to all partiles α of the phase γ, and Eαrepresents the energy of a partile due to its interations with the neighbors β. The quantities
gAA, gφ, gφ̃, FA, FB, {. . .}ijkl, and {. . .}mn are de�ned by means of the EAM potentials (f., Eq(64)) determined by the distane Rαβ2 between atom α and β. In order to obtain the sti�nessoe�ients and the HGCs as funtions of c the following proedure is performed:1. Relate the �marosopi� Gibbs free energy density ψ to the mirosopi equation (111).2. Substitute the derivatives of the partile onentration y for terms of the mass onentration

c. Here one an use the relation:
cB = (1 − cA) ≡ c =

mB
mB +mA =

yBMB
yBMB + (1 − yB)MA (112)

⇒ yB = (1 − yA) ≡ y = ỹ(c) =
cMA

MB − c(MB −MA)
, (113)30



where MA/B is the moleular weight of the omponents A/B, and cB is the mass onen-tration of B.3. Compare the resulting equations with the marosopi equations (62,63) and identify theHGCs and sti�ness oe�ients.We reall the following thermodynamial relations for one Mole:
Ĝ = NA(Eα − Ts) , ψ = ρ0

Ĝ

m
, m = NAµ0M(c) , (114)

⇒ ψ = δ(c)(Eα − Ts) with δ(c) =
1

Ω0(c)
=

ρ0

µ0M(c)
and 1

ρ0
=

c0
ρCu +

1 − c0
ρAg . (115)

Ĝ stands for the Gibbs free energy per one Mole, NA = 6.0237 ·1023 is the number of partiles inone Mole (Avogadro's onstant) and s = −kB[y ln y + (1− y) ln(1− y)] represents the entropywith respet to one partile. Furthermore m denotes the total mass, ρ0 identi�es the mass densityof the alloy in the homogeneous referene state with the (homogeneous) onentration c0 and
µ0 = 1.66 · 10−27kg stands for 1

12 of the weight of a Carbon 12 atom. The symbol M(c) denotesan averaged moleular weight of the binary alloy A-B and an be obtained from the moleularweights of the pure omponents through the relation M = M̃(c) = y(c)MB + [1 − y(c)]MA.The symbol δ identi�es the reiproal volume oupied by an atom and yields the followingexpression:
1

δ(c)
ψ =

1

2
gAA + y(1 − y)gφ + ygφ̃ + FA + y(FB − FA) +

+
1

2
GijGkl

{
. . .
}

ijkl
(y) + (∇2

mny)
{
. . .
}

mn
(y) + kBT [y ln y + (1 − y) ln(1 − y)] .(116)Considering the funtion ỹ(c) in Eq (113) and applying the hain rule one an replae ∇2

mnywith the following relation:
∇2
mny =

∂2y

∂c2
∂c

∂Xm

∂c

∂Xn
+
∂y

∂c

∂2c

∂Xm∂Xn

=
2MAMB(MB −MA)

[MB − (MB −MA)c]3
(∇mc)(∇nc) +

MAMB
[MB − (MB −MA)c]2

∇2
mnc (117)

≡ M(c) · Dmn(c) , (118)with the symboli notation for the vetor M(c) and for the vetorial di�erential operator Dmn(⋄)as follows:
M(c) =

( M(1)(c)M(2)(c)

)

=

(
2MAMB(MB−MA)
[MB−(MB−MA)c]3

MAMB
[MB−(MB−MA)c]2

) and
Dmn(⋄) =

(

D(1)
mn

D(2)
mn

)

=

(
∇m(⋄)∇n(⋄)

∇2
mn(⋄)

)

. (119)
31



A ombination of the relations (113,117) with Eq (116) yields the following expressions:
ψ0(c)

δ(c)
=

1

2
gAA + y(c)(1 − y(c))gφ + y(c)gφ̃ + FA + y(c)(FB − FA) , (120)
ψelast(c)
δ(c)

= Eαelast =
Ωα

0

2
Gij Cijkl(c) Gkl , (121)

amn(c,Gpq)

δ(c)
= −M(2)(c) Hmn(c,Gpq) , (122)

bmn(c,Gpq)

δ(c)
= M(1)(c) Hmn(c,Gpq) , (123)

Cijkl(c) =
1

Ωα
0

[

2BA
ijkl + 4y(c)(1 − y(c))Bφ

ijkl + 4y(c)Bφ̃
ijkl + 4

(

WA
ijkl + y(c)W△

ijkl

)

×

×
(

F ′A + y(c)(F ′B − F ′A)
)

+ 4
(

V A
ij + y(c)V △

ij

)(

V A
kl + y(c)V △

kl

)(

F ′′A + y(c)(F ′′B − F ′′A)
)]

,(124)
Hmn(c,Gpq) =

1

4

(

(1 − 2y(c))gφmn + gφ̃mn

)

+
1

2
ρ̄△mn

(

F ′A + y(c)(F ′B − F ′A)
)

+
1

2
Gij

[

(1 − 2y(c))Aφijmn +Aφ̃ijmn + 2V △
ijmn

(

F ′A + y(c)(F ′B − F ′A)
)

+ 2ρ̄△mn

(

V A
ij + y(c)V △

ij

)(

F ′′A + y(c)(F ′′B − F ′′A)
)]

+
1

2
GijGkl

[

(1 − 2y(c))Bφ
ijklmn +Bφ̃

ijklmn

+ 2W△
ijklmn

(

F ′A + y(c)(F ′B − F ′A)
)

+ 2ρ̄△mn

(

WA
ijkl + y(c)W△

ijkl

)(

F ′′A + y(c)(F ′′B − F ′′A)
)

+ 2V △
klmn

(

V A
ij + y(c)V △

ij

)(

F ′′A + y(c)(F ′′B − F ′′A)
)

+ 2V △
ijmn

(

V A
kl + y(c)V △

kl

)

×

×
(

F ′′A + y(c)(F ′′B − F ′′A)
)

+ 2ρ̄△mn

(

V A
ij + y(c)V △

ij

)(

V A
kl + y(c)V △

kl

)(

F ′′′A + y(c)(F ′′′B − F ′′′A )
)]

.(125)The HGCs Akl an diretly be alulated from (122) and (123) by means of the relation Akl =
∂akl

∂c + bkl. Moreover it should be mentioned that Eqns (120-123) hold for a equilibrium phaseonsisting of two omponents in whih the omposition is haraterized by the mass onentration
c ≡ cB.Appendix C. Two equations for G and for EuvfWe onsider the Eqns (81) and (30a) together with the de�nitions shown in Eqns (82-85). Inorder to determine the oe�ients C1111, C1122, and C2323 we �rst alulate all the required
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derivatives:
ρ′(R2) = −β ρe

R2
, ρ′′(R2) = β2 ρe

R4
, φ′(R2) = −γ φe

R2
, φ′′(R2) = γ2 φe

R4
(126)

F ′(ρ̄e) = −6
γφe
βρ̄e , F ′′(ρ̄e) =

Esubα2 + 24γφe(β − γ)

4β2ρ̄2e . (127)Due to nearest neighbor interations all neighbors of an atom α are separated by the samedistane R. Thus the derivatives ρ′, ρ′′, and φ′′ do not depend on the sum and one an write fora pure substane:
Cijkl =

1

Ω0

[

2φ′′
(∑

β

RiRjRkRl

)

+ 4F ′ρ′′
(∑

β

RiRjRkRl

)

+ 4F ′′ρ′ρ′
(∑

β

RiRj

)(∑

β

RkRl

)](128)Note that for an FCC rystal the following relations hold: ∑R4
1 = 8(a/2)4, ∑R2

1 =
∑
R2

2 =
8(a/2)2, ∑R2

2R
2
3 = 4(a/2)2(a/2)2, and ∑R2R3 = 0, f., Figure 13. Therefore one an �nally
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Figure 13: The number of atoms with a ontribution in x1, x2 and x3 diretion (the un�lled atoms haveno ontribution in the onsidered diretion).�nd for the elasti onstants:
C111 = Ξa + Ξb , C1122 =

1

2
Ξa + Ξb , C2323 =

1

2
Ξa (129)with the de�nitions:

Ξa =
a4

Ω0

[
φ′′(R2) + 2F ′(ρ̄e)ρ′′(R2)

]
, Ξb = 16

a4

Ω0
F ′′(ρ̄e)ρ′(R2)ρ′(R2). (130)In the ase of the average of the Voigt shear modulus it follows (a4 = 4R4) that:

G =
2

5
Ξa =

2a4

5Ω0

[
φ′′(R2) + 2F ′(ρ̄e)ρ′′(R2)

]
=

8

5

φeγ(γ − β)

Ω0
(131)or:

G =
24

15

Φeγ(γ − β)

Ω0
. (132)In the same manner one an show for the ompressibility: κ = 2

3Ξa + Ξb.33



We now onsider the vaany formation energy Euvf. For this purpose we want to follow thestrategy of R.A. Johnson in [3℄ and note aording to Eq (80) for equilibrium:
Euvf = −6φe − 12F (ρ̄e) + 12F (

11

12
ρ̄e) =

(77)
= −Φe + 12(Esub + Φe) − 12Esub [1 + h

(
11

12

)]

exp

[

−h
(

11

12

)]

− 12Φe(11

12

) γ
β (133)with h(x) = α

(√

1 − 1
β lnx− 1

). Performing a Taylor-expansion of the form:
h(x) = −1

2

α

β
(x− 1) +

1

4

α

β

(

1 − 1

2β

)

(x− 1)2 + . . . , (134)
exp[−h(x)] = 1 +

1

2

α

β
(x− 1) − 1

4

α

β

(

1 − 1

2β
− α

2β

)

(x− 1)2 + . . . , (135)
x

γ
β = 1 +

γ

β
(x− 1) +

1

2

γ

β

(
γ

β
− 1

)

(x− 1)2 + . . . . (136)An evaluation of these series at x = 11
12 results in:

Euvf =
Esub
24

(
α

β

)2 [ 337

1152
+

1

2304
β2

(
1

2
+
a

2

)]

+ Φe(γ − β

β

)(

1 − 1

24

γ

β

)

. (137)The various ontributions in this equation an be also investigated by means of quantum me-hanial methods. Following Johnson in [3℄ the leading term of Eq (137) is Φe(γ−ββ ). Thereforeit is reasonable to onsider the approximation:
Euvf ∼= Φe(γ − β

β

)
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