169 research outputs found

    Making pions with laser light

    Get PDF
    The interaction of high intensity short pulse laser beams with plasmas can accelerate electrons to energies in excess of a GeV. These electron beams can subsequently be used to generate short-lived particles such as positrons, muons, and pions. In recent experiments, we have made the first measurements of pion production using 'all optical' methods. In particular, we have demonstrated that the interaction of bremsstrahlung generated by laser driven electron beams with aluminum atoms can produce the long lived isotope of magnesium (27Mg) which is a signature for pion (π +) production and subsequent muon decay. Using a 300 TW laser pulse, we have measured the generation of 150 ± 50 pions per shot. We also show that the energetic electron beam is a source of an intense, highly directional neutron beam resulting from (γ, n) reactions which contributes to the 27Mg measurement as background via the (n, p) process

    Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    Get PDF
    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period

    Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    Get PDF
    The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (μ 500 MeV) with an intense laser pulse (a0>10). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy >30 MeV

    General features of experiments on the dynamics of laser-driven electron–positron beams

    Get PDF
    The experimental study of the dynamics of neutral electron–positron beams is an emerging area of research, enabled by the recent results on the generation of this exotic state of matter in the laboratory. Electron–positron beams and plasmas are believed to play a major role in the dynamics of extreme astrophysical objects such as supermassive black holes and pulsars. For instance, they are believed to be the main constituents of a large number of astrophysical jets, and they have been proposed to significantly contribute to the emission of gamma-ray bursts and their afterglow. However, despite extensive numerical modelling and indirect astrophysical observations, a detailed experimental characterisation of the dynamics of these objects is still at its infancy. Here, we will report on some of the general features of experiments studying the dynamics of electron–positron beams in a fully laser-driven setup

    Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    Get PDF
    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (>= 1 T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of epsilon(B) approximate to 10(-3) is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets

    Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser

    Get PDF
    The motion of an electron in an external field of arbitrary intensity is one of the most fundamental outstanding problems in electrodynamics. Remarkably, there is no unanimously accepted theoretical solution for high intensities and little or no experimental data to date. The basic challenge is the inclusion of the self-interaction of the electron with the fields emitted by the electron itself -- the so-called radiation reaction (RR). As is well known, solutions exist for specific parameter ranges. At low field-strength, where RR is negligible, the equation of motion is the well-known Lorentz equation. At higher field-strength in the classical limit the Landau-Lifshitz equation is the accepted solution. For the strongest fields a full quantum description is required and this is currently the subject of active research. We report on the first experimental evidence of strong radiation reaction during the interaction of a relativistic electron beam with an intense laser field

    A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV

    Get PDF
    We present a design for a pixelated scintillator based gamma-ray spectrometer for non-linear inverse Compton scattering experiments. By colliding a laser wakefield accelerated electron beam with a tightly focused, intense laser pulse, gamma-ray photons up to 100 MeV energies and with few femtosecond duration may be produced. To measure the energy spectrum and angular distribution, a 33 × 47 array of cesium-iodide crystals was oriented such that the 47 crystal length axis was parallel to the gamma-ray beam and the 33 crystal length axis was oriented in the vertical direction. Using an iterative deconvolution method similar to the YOGI code, modeling of the scintillator response using GEANT4 and fitting to a quantum Monte Carlo calculated photon spectrum, we are able to extract the gamma ray spectra generated by the inverse Compton interaction

    Horizon 2020 EuPRAXIA design study

    Get PDF
    corecore