422 research outputs found

    Power-Based Droop Control in DC Microgrids Enabling Seamless Disconnection From Upstream Grids

    Get PDF
    This paper proposes a local power-based droop controller for distributed energy resource converters in dc microgrids that are connected to upstream grids by grid-interface converters. During normal operation, the grid-interface converter imposes the microgrid bus voltage, and the proposed controller allows power flow regulation at distributed energy resource converters\u2019 output. On the other hand, during abnormal operation of the grid-interface converter (e.g., due to faults in the upstream grid), the proposed controller allows bus voltage regulation by droop control. Notably, the controller can autonomously convert from power flow control to droop control, without any need of bus voltage variation detection schemes or communication with other microgrid components, which enables seamless transitions between these two modes of operation. Considering distributed energy resource converters employing the power-based droop control, the operation modes of a single converter and of the whole microgrid are defined and investigated herein. The controller design is also introduced. Furthermore, the power sharing performance of this control approach is analyzed and compared with that of classical droop control. The experimental results from a laboratory-scale dc microgrid prototype are reported to show the final performances of the proposed power-based droop control

    Uncoupling of neurogenesis and differentiation during retinal development

    Get PDF
    Conventionally, neuronal development is regarded to follow a stereotypic sequence of neurogenesis, migration, and differentiation. We demonstrate that this notion is not a general principle of neuronal development by documenting the timing of mitosis in relation to multiple differentiation events for bipolar cells (BCs) in the zebrafish retina using in vivo imaging. We found that BC progenitors undergo terminal neurogenic divisions while in markedly disparate stages of neuronal differentiation. Remarkably, the differentiation state of individual BC progenitors at mitosis is not arbitrary but matches the differentiation state of post-mitotic BCs in their surround. By experimentally shifting the relative timing of progenitor division and differentiation, we provide evidence that neurogenesis and differentiation can occur independently of each other. We propose that the uncoupling of neurogenesis and differentiation could provide neurogenic programs with flexibility, while allowing for synchronous neuronal development within a continuously expanding cell pool

    Putting the self in self-correction: findings from the loss-of-confidence project

    Get PDF
    Science is often perceived to be a self-correcting enterprise. In principle, the assessment of scientific claims is supposed to proceed in a cumulative fashion, with the reigning theories of the day progressively approximating truth more accurately over time. In practice, however, cumulative self-correction tends to proceed less efficiently than one might naively suppose. Far from evaluating new evidence dispassionately and infallibly, individual scientists often cling stubbornly to prior findings. Here we explore the dynamics of scientific self-correction at an individual rather than collective level. In 13 written statements, researchers from diverse branches of psychology share why and how they have lost confidence in one of their own published findings. We qualitatively characterize these disclosures and explore their implications. A cross-disciplinary survey suggests that such loss-of-confidence sentiments are surprisingly common among members of the broader scientific population yet rarely become part of the public record. We argue that removing barriers to self-correction at the individual level is imperative if the scientific community as a whole is to achieve the ideal of efficient self-correction

    Carbamylated low-density lipoprotein induces endothelial dysfunction

    Get PDF
    Aims Cardiovascular events remain the leading cause of death in Western world. Atherosclerosis is the most common underlying complication driven by low-density lipoproteins (LDL) disturbing vascular integrity. Carbamylation of lysine residues, occurring primarily in the presence of chronic kidney disease (CKD), may affect functional properties of lipoproteins; however, its effect on endothelial function is unknown. Methods and results Low-density lipoprotein from healthy donors was isolated and carbamylated. Vascular reactivity after treatment with native LDL (nLDL) or carbamylated LDL (cLDL) was examined in organ chambers for isometric tension recording using aortic rings of wild-type or lectin-like-oxidized LDL receptor-1 (LOX-1) transgenic mice. Reactive oxygen species (ROS) and nitric oxide (NO) production were determined using electron spin resonance spectroscopy. The effect of LDL-carbamyl-lysine levels on cardiovascular outcomes was determined in patients with CKD during a median follow-up of 4.7 years. Carbamylated LDL impaired endothelium-dependent relaxation to acetylcholine or calcium-ionophore A23187, but not endothelium-independent relaxation to sodium nitroprusside. In contrast, nLDL had no effect. Carbamylated LDL enhanced aortic ROS production by activating NADPH-oxidase. Carbamylated LDL stimulated endothelial NO synthase (eNOS) uncoupling at least partially by promoting S-glutathionylation of eNOS. Carbamylated LDL-induced endothelial dysfunction was enhanced in LOX-1 transgenic mice. In patients with CKD, LDL-carbamyl-lysine levels were significant predictors for cardiovascular events and all-cause mortality. Conclusions Carbamylation of LDL induces endothelial dysfunction via LOX-1 activation and increased ROS production leading to eNOS uncoupling. This indicates a novel mechanism in the pathogenesis of atherosclerotic disease which may be pathogenic and prognostic in patients with CKD and high plasma levels of cLD

    Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study.

    Get PDF
    Frontotemporal dementia (FTD) is a highly heritable condition with multiple genetic causes. In this study, similarities and differences of gray matter (GM) atrophy patterns were assessed among 3 common forms of genetic FTD (mutations in C9orf72, GRN, and MAPT). Participants from the Genetic FTD Initiative (GENFI) cohort with a suitable volumetric T1 magnetic resonance imaging scan were included (319): 144 nonmutation carriers, 128 presymptomatic mutation carriers, and 47 clinically affected mutation carriers. Cross-sectional differences in GM volume between noncarriers and carriers were analyzed using voxel-based morphometry. In the affected carriers, each genetic mutation group exhibited unique areas of atrophy but also a shared network involving the insula, orbitofrontal lobe, and anterior cingulate. Presymptomatic GM atrophy was observed particularly in the thalamus and cerebellum in the C9orf72 group, the anterior and medial temporal lobes in MAPT, and the posterior frontal and parietal lobes as well as striatum in GRN. Across all presymptomatic carriers, there were significant decreases in the anterior insula. These results suggest that although there are important differences in atrophy patterns for each group (which can be seen presymptomatically), there are also similarities (a fronto-insula-anterior cingulate network) that help explain the clinical commonalities of the disease

    Behavioural and neuroanatomical correlates of auditory speech analysis in primary progressive aphasias

    Get PDF
    Background Non-verbal auditory impairment is increasingly recognised in the primary progressive aphasias (PPAs) but its relationship to speech processing and brain substrates has not been defined. Here we addressed these issues in patients representing the non-fluent variant (nfvPPA) and semantic variant (svPPA) syndromes of PPA. Methods We studied 19 patients with PPA in relation to 19 healthy older individuals. We manipulated three key auditory parameters—temporal regularity, phonemic spectral structure and prosodic predictability (an index of fundamental information content, or entropy)—in sequences of spoken syllables. The ability of participants to process these parameters was assessed using two-alternative, forced-choice tasks and neuroanatomical associations of task performance were assessed using voxel-based morphometry of patients’ brain magnetic resonance images. Results Relative to healthy controls, both the nfvPPA and svPPA groups had impaired processing of phonemic spectral structure and signal predictability while the nfvPPA group additionally had impaired processing of temporal regularity in speech signals. Task performance correlated with standard disease severity and neurolinguistic measures. Across the patient cohort, performance on the temporal regularity task was associated with grey matter in the left supplementary motor area and right caudate, performance on the phoneme processing task was associated with grey matter in the left supramarginal gyrus, and performance on the prosodic predictability task was associated with grey matter in the right putamen. Conclusions Our findings suggest that PPA syndromes may be underpinned by more generic deficits of auditory signal analysis, with a distributed cortico-subcortical neuraoanatomical substrate extending beyond the canonical language network. This has implications for syndrome classification and biomarker development
    • 

    corecore