7,045 research outputs found

    Comparative Effectiveness of Step-up Therapies in Children with Asthma Prescribed Inhaled Corticosteroids : A Historical Cohort Study

    Get PDF
    This work was supported by the Respiratory Effectiveness Group. Acknowledgments We thank the Respiratory Effectiveness Group for funding this work, Annie Burden for assistance with statistics, and Simon Van Rysewyk and Lisa Law for assistance with medical writing.Peer reviewedPostprin

    Analyzing the 3D Printed Material Tango Plus FLX930 for Using in Self-Folding Structure

    Get PDF
    Self-folding is the ability of the structure to fold and/or unfold without human intervention or any application of external manipulation. It is known that the structure of folding object consists of two essential parts. These parts are the faces and the creases. In this paper, it is assumed that the faces could be built by using solid materials, and the crease lines can be built using soft material which provides a high bent ability. Furthermore, these two materials should be combined built without using any connections between them. Fortunately, the 3D printer provides this capability. It can print two types of different materials at the same time for the same structure. Therefore, a 3D printer is chosen to fabricate a folding structure using two types of material. These types are the Vero for solid faces and Tango plus FLX930 for the soft creases lines. The soft material at hinge part (creases lines) subjected to the load directly when the structure folds. It should have a clear view of the mechanical properties of this material. Therefore, several mechanical tests for Tango FLX930 material are operated to calculate its mechanical properties and find the force that required to fold it

    Sensitivity of orbiting JEM-EUSO to large-scale cosmic-ray anisotropies

    Full text link
    The two main advantages of space-based observation of extreme-energy (1019\gtrsim 10^{19}~eV) cosmic-rays (EECRs) over ground-based observatories are the increased field of view, and the all-sky coverage with nearly uniform systematics of an orbiting observatory. The former guarantees increased statistics, whereas the latter enables a partitioning of the sky into spherical harmonics. We have begun an investigation, using the spherical harmonic technique, of the reach of \J\ into potential anisotropies in the extreme-energy cosmic-ray sky-map. The technique is explained here, and simulations are presented. The discovery of anisotropies would help to identify the long-sought origin of EECRs.Comment: 7 pages, 6 figures. To appear in the proceedings of the Cosmic Ray Anisotropy Workshop, Madison Wisconsin, September 201

    Fisher choice may increase prevalence of green turtle fibropapillomatosis disease

    Get PDF
    This document is protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permission.Open access journalDisease in wildlife populations is often controlled through culling. But when healthy individuals are removed and diseased individuals are left in the population, it is anticipated that prevalence of disease increases. Although this scenario is presumably common in exploited populations where infected individuals are less marketable, it is not widely reported in the literature. We describe this scenario in a marine turtle fishery in the Turks and Caicos Islands (TCI), where green turtles are harvested for local consumption. During a 2-year period, we recorded the occurrence of fibropapillomatosis (FP) disease in green turtles (Chelonia mydas) captured during in-water surveys and compared it with that of turtles landed in the fishery. 13.4% (n = 32) of turtles captured during in-water surveys showed externally visible signs of FP. FP occurred at specific geographic locations where fishing also occurred. Despite the disease being prevalent in the size classes selected by fishers, FP was not present in any animals landed by the fishery (n = 162). The majority (61%) of fishers interviewed expressed that they had caught turtles with FP. Yet, 82% of those that had caught turtles with the disease chose to return their catch to the sea, thereby selectively harvesting healthy turtles and leaving those with the disease in the population. Our study illustrates that fisher choice may increase the prevalence of FP disease and highlights the importance of this widely neglected driver in the disease dynamics of exploited wildlife populations.Natural Environment Research Council (NERC) CASE PhD studentshi

    Dusty Plasma Correlation Function Experiment

    Full text link
    Dust particles immersed within a plasma environment, such as those in protostellar clouds, planetary rings or cometary environments, will acquire an electric charge. If the ratio of the inter-particle potential energy to the average kinetic energy is high enough the particles will form either a "liquid" structure with short-range ordering or a crystalline structure with long range ordering. Many experiments have been conducted over the past several years on such colloidal plasmas to discover the nature of the crystals formed, but more work is needed to fully understand these complex colloidal systems. Most previous experiments have employed monodisperse spheres to form Coulomb crystals. However, in nature (as well as in most plasma processing environments) the distribution of particle sizes is more randomized and disperse. This paper reports experiments which were carried out in a GEC rf reference cell modified for use as a dusty plasma system, using varying sizes of particles to determine the manner in which the correlation function depends upon the overall dust grain size distribution. (The correlation function determines the overall crystalline structure of the lattice.) Two dimensional plasma crystals were formed of assorted glass spheres with specific size distributions in an argon plasma. Using various optical techniques, the pair correlation function was determined and compared to those calculated numerically.Comment: 6 pages, Presented at COSPAR '0

    A Sensitivity Study of the Enceladus Torus

    Full text link
    We have developed a homogeneous model of physical chemistry to investigate the neutral-dominated, water-based Enceladus torus. Electrons are treated as the summation of two isotropic Maxwellian distributions-a thermal component and a hot component. The effects of electron impact, electron recombination, charge exchange, and photochemistry are included. The mass source is neutral H2_2O, and a rigidly-corotating magnetosphere introduces energy via pickup of freshly-ionized neutrals. A small fraction of energy is also input by Coulomb collisions with a small population (<< 1%) of supra-thermal electrons. Mass and energy are lost due to radial diffusion, escaping fast neutrals produced by charge exchange and recombination, and a small amount of radiative cooling. We explore a constrained parameter space spanned by water source rate, ion radial diffusion, hot-electron temperature, and hot-electron density. The key findings are: (1) radial transport must take longer than 12 days; (2) water is input at a rate of 100--180 kg s1^{-1}; (3) hot electrons have energies between 100 and 250 eV; (4) neutrals dominate ions by a ratio of 40:1 and continue to dominate even when thermal electrons have temperatures as high as \approx 5 eV; (5) hot electrons do not exceed 1% of the total electron population within the torus; (6) if hot electrons alone drive the observed longitudinal variation in thermal electron density, then they also drive a significant variation in ion composition.Comment: 9 pages text, 3 tables, 9 figure

    Carbonation of surface protected concrete

    Get PDF
    Concrete structures are exposed to carbonation that may cause rapid decay, shortening their service life and raising maintenance and repair costs. Carbonation lowers the alkalinity of the concrete depassivating the steel reinforcement. Two limit states can be identified with regard to service life. The first limit state ends when the steel is depassivated. The second limit state is based on cracking of the concrete cover due to oxides generated during corrosion. The service life includes a certain propagation period of corrosion during which the cross-sectional area of steel is progressively decreased, the bond between steel and concrete is reduced and the effective cross-sectional area of concrete is diminished due to spalling of the cover. Surface treatment is commonly used to improve the resistance of concrete to carbonation. A barrier is formed retarding the carbonation reactions in the interior of the concrete. In this study surface protected concretes were compared with non-protected concretes. The used surface protected concretes presented generally lower carbonation diffusion coefficients than the non-protected concretes. The use of epoxy resin showed better protection than the use of acrylic and siloxane resins. The composition of the concretes is an important factor affecting the diffusion of carbonation. The influence of the water–cement ratio was very important. The carbonation diffusion coefficients increased with the water–cement ratio. The prescriptive methodology is not a guarantee to obtain the desired service lives of 50 or 100 years. The desired services lives were only obtained with the use of surface protection treatments

    Extracting non-linear integrate-and-fire models from experimental data using dynamic I–V curves

    Get PDF
    The dynamic I–V curve method was recently introduced for the efficient experimental generation of reduced neuron models. The method extracts the response properties of a neuron while it is subject to a naturalistic stimulus that mimics in vivo-like fluctuating synaptic drive. The resulting history-dependent, transmembrane current is then projected onto a one-dimensional current–voltage relation that provides the basis for a tractable non-linear integrate-and-fire model. An attractive feature of the method is that it can be used in spike-triggered mode to quantify the distinct patterns of post-spike refractoriness seen in different classes of cortical neuron. The method is first illustrated using a conductance-based model and is then applied experimentally to generate reduced models of cortical layer-5 pyramidal cells and interneurons, in injected-current and injected- conductance protocols. The resulting low-dimensional neuron models—of the refractory exponential integrate-and-fire type—provide highly accurate predictions for spike-times. The method therefore provides a useful tool for the construction of tractable models and rapid experimental classification of cortical neurons
    corecore