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Abstract The dynamic I –V curve method was recently
introduced for the efficient experimental generation of redu-
ced neuron models. The method extracts the response
properties of a neuron while it is subject to a naturalistic sti-
mulus that mimics in vivo-like fluctuating synaptic drive. The
resulting history-dependent, transmembrane current is then
projected onto a one-dimensional current–voltage relation
that provides the basis for a tractable non-linear integrate-
and-fire model. An attractive feature of the method is that
it can be used in spike-triggered mode to quantify the dis-
tinct patterns of post-spike refractoriness seen in different
classes of cortical neuron. The method is first illustrated using
a conductance-based model and is then applied experimen-
tally to generate reduced models of cortical layer-5 pyramidal
cells and interneurons, in injected-current and injected-
conductance protocols. The resulting low-dimensional neu-
ron models—of the refractory exponential integrate-and-fire
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type—provide highly accurate predictions for spike-
times. The method therefore provides a useful tool for the
construction of tractable models and rapid experimental
classification of cortical neurons.

Keywords I-V curve · Exponential integrate-and-fire ·
Refractoriness

1 Introduction

The appropriate level of detail in a biophysical neuron model
is set by its functional requirements. From the perspective
of detailed ion-channel models, the Hodgkin–Huxley
formalism (Hodgkin and Huxley 1952), comprising redu-
ced models of the kinetics of voltage-gated channels with
averaged activation and inactivation variables, represents a
gross simplification. However, in the context of causally lin-
king cellular electrophysiology to the broad features of
ion-channel makeup, the formalism is highly satisfactory.
At the next scale up in the modeling of neural tissue, a cen-
tral goal is to predict emergent computational properties in
populations and recurrent networks of neurons (Gerstner and
van Hemmen 1993; Brunel and Hakim 1999; Gerstner 2000;
Brunel and Wang 2003; Gigante et al. 2007) from the pro-
perties of their component cells. The neurons that comprise
such network models may be modeled in biophysical and
geometric detail (Koch 1999; Huys et al. 2006) for large-
scale simulation (Markram 2006), but also of great practical
use are experimentally-verifiable reduced descriptions that
allow for a transparent understanding of the causal relation
between cellular properties and network states.

Detailed biophysical models are characterized by high
dimensionality and so the generation of simplified models
generally involves dimensional reduction at some level. In
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the context of neurons the dimensionality arises both from
their extended geometry and the coupled non-linear diffe-
rential equations that describe the voltage-gated channels.
Reduction schemes typically consider the neuron to be
isopotential (a point neuron) and simplify the voltage-history
dependent channel dynamics by a one-dimensional relation
between current and voltage or a two-dimensional relation
capturing effects from an additional subthreshold or adap-
tation current (Brunel et al. 2003; Richardson et al. 2003;
Izhikevich 2004; Gigante et al. 2007).

Integrate-and-fire (IF) neurons [see Burkitt (2006a,b) for
a recent review] underlie many forms of reduced model and
comprise a voltage-derivative coming from the capacitive
C charging of the membrane and some choice of voltage-
dependent function F(V ) which aims to capture the voltage-
dependent ionic current

dV

dt
= F(V ) + Iapp/C . (1)

Here Iapp is any current injected by an intracellular electrode.
The action potential in IF models is modeled by a threshold
Vth (at low or high voltage depending on the particular IF
model) and a reset Vre followed by a refractory period, after
which the subthreshold dynamics of Eq. (1) continue.

The most commonly used member of the IF family is
the linear Leaky IF model (LIF) that features an ohmic form
F(V ) = (Em−V )/τm , where Em is the rest and τm the mem-
brane time constant, with a low threshold Vth ∼ −50 mV
considered to be at the onset of the spike. This model is lar-
gely tractable and has been extensively studied in the context
of both populations and networks (Brunel and Hakim 1999;
Gigante et al. 2007) of neurons. However, the lack of an
explicit spike mechanism in the LIF is a weakness and can
lead to responses that are not common to the general class
of Type I neurons, particularly in relation to the response
to fluctuating input (Fourcaud-Trocmé and Brunel 2005).
The canonical type I neuron can be cast in the IF form—
the Quadratic IF (QIF) model—with a function F(V ) that
is parabolic (Ermentrout and Kopell 1986). More recently
a second non-linear model, the Exponential IF model, was
introduced (Fourcaud-Trocmé et al. 2003) that captures the
action potential in a more biophysically-motivated way by fit-
ting the region of the spike-onset to the conductance-based
Wang–Buzsáki model (Wang and Buzsáki 1996). Though the
response properties of such non-linear IF models do not in
general have solutions in terms of tabulated functions, they
can nevertheless be extracted numerically but exactly via a
simple algorithm (Richardson 2007). Therefore, the family
of non-linear IF neurons provides a tractable class of reduced
model which, if matched to experiment, provide an excellent
starting point for the causal analysis of emergent states in
recurrent network models.

In this paper, we will review the dynamic I –V method
(Badel et al. 2008) which provides an efficient technique
for extracting non-linear IF models and post-spike refractory
response-functions from intracellular voltage recordings. The
method will be illustrated using the conductance-based
Wang–Buzsáki hippocampal interneuron model. It will then
be applied to intracellular voltage recordings from cortical
neurons to build reduced models of layer-5 pyramidal cells
and interneurons. It will be further demonstrated that the
method can be used in dynamic-clamp conductance-injection
mode in which the shunting effects of synaptic inhibition on
voltage fluctuations are included. The paper closes with a
discussion of the applications and extensions of the method.

2 From dynamic I–V curves to reduced models

The potential across the neuronal membrane obeys a current
balance equation

C
dV

dt
+ Iion = Iapp (2)

where V is the membrane voltage at the point of the applied
current Iapp (in this paper, the soma), C is the membrane
capacitance and Iion contains the intrinsic voltage-gated cur-
rents that are instantaneous-voltage and voltage-history
dependent. In general neurons are not sufficiently compact
for the voltage to be constant throughout the cell. Therefore,
the voltage and currents must be interpreted as being some
measure of the properties within, roughly speaking, an elec-
trotonic length of the electrode. Hence, in an experimental
context the ionic current Iion will also include lateral cur-
rents flowing from the soma to the axon or dendrites. The
applied current that is injected into the cells is a fluctuating
waveform (combination of Ornstein–Uhlenbeck processes)
chosen to create voltage traces that are in-vivo-like in that
they fluctuate and explore the entire range of subthreshold
voltages.

To provide a clear demonstration of the dynamic I –V
methodology it is first applied to a conductance-based neu-
ron model—the Wang–Buzsáki model (Wang and Buzsáki
1996)—for which the underlying properties are known. In
this model the ionic transmembrane currents take the form

Iion = gL(V − EL) + gNam3h(V − ENa)

+ gK n4(V − EK ), (3)

where gL , gNa , gK are the maximum leak, sodium and potas-
sium conductances, EL , ENa , EK the corresponding reversal
potentials, and m, h, n are gating variables. The time course of
the ionic current Iion, due to some pattern of applied current
Iapp, can be extracted from a voltage trace by re-arranging
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Fig. 1 Summary of the dynamic I –V curve method and its application
to the Wang–Buszáki model. a The derivative of the membrane voltage
(top graph), multiplied by the cellular capacitance, is subtracted from
the injected current (middle graph) to yield the intrinsic membrane cur-
rent Iion (bottom graph). b The intrinsic membrane current Iion is plotted
against the membrane voltage (black symbols). The dynamic I –V curve
(red symbols) is obtained by averaging Iion in small voltage bins. Error
bars represent the standard deviation. c Measuring the cellular capaci-
tance. At a fixed subthreshold voltage, the dynamic membrane current
Iion = Iapp − CdV/dt has a variance that depends on the value of C
used in the calculation; the correct value of C corresponds to the point
of minimal variance. d Relating dynamic I –V curves and non-linear
integrate-and-fire models. The function F(V ) = −Idyn(V )/C (sym-
bols) is plotted as a function of voltage, together with the EIF model

fit (red line). Inset: semi-log plot of F(V ) with leak current subtracted,
showing a nearly exponential run-up. e Spike-triggered dynamic I –V
curves. The functions F(V ) measured in small time slices after each
spike (symbols) are plotted together with the the EIF fit (green) and the
pre-spike I –V curve as a reference (red). At early times it is clearly
seen that both the conductance and the spike threshold are significantly
increased. f Dynamics of the EIF model parameters during the refrac-
tory period. The parameters obtained from the fits of the I –V curves
in e are plotted as a function of the time since the last spike (symbols)
and fitted with exponential functions (green). g Comparison of the pre-
diction of the refractory EIF (rEIF) model (green) with a voltage trace
of the Wang–Buzsáki model (black) shows excellent agreement, with
96% of the spikes correctly predicted by the EIF model within a 5 ms
window

Eq. (2) to give

Iion = Iapp − C
dV

dt
. (4)

If the capacitance C is known (to be derived in a following
section) and the voltage derivative calculated directly from
finite-differences, all quantities on the right-hand side of the
equation are known and so the required Iion is obtained as a
function of time. This process is shown in Fig. 1a.

Definition of the dynamic I –V curve The measured voltage
and ionic current derived from Eq. (4) represent a current–
voltage relation parameterized by time. The aim is to find
a one-dimensional relation between current and voltage and

so a scatter plot is made of Iion as a function of voltage,
with all points that lie within 200 ms after an action potential
excluded (the post-spike refractory behavior is returned to
later). The average of Iion for a particular voltage

Idyn(V ) = 〈Iion(V, t)〉V (5)

defines the dynamic I –V curve Idyn. This quantity is plotted
in Fig. 1b where it can be seen that the dynamic I –V curve
comprises an ohmic region at subthreshold voltages followed
by a sharp down turn at the onset of the spike. Before descri-
bing the relation to non-linear IF models, the measurement
of the capacitance is discussed.
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Determining the membrane capacitance Capacitance can be
measured in a variety of ways, with the standard approach
in current-clamp mode being the fitting of the early vol-
tage response to rectangular current pulses. However, applied
fluctuating-current protocols offer a convenient alternative
method that is now described: If Eq. (4) is applied with an
estimate Ce of the capacitance instead of its true value C , an
incorrect estimate of the ionic current Iion is found that, at a
fixed voltage V , has a variance of the form

Var

[
Iion

Ce

]
V

= Var

[
Iion

C

]
V
+

(
1

C
− 1

Ce

)2

Var
[
Iapp

]
V (6)

where Var[X ]V denotes the variance of some quantity X mea-
sured at a voltage V , and where it is assumed that there is no
covariance between applied and ionic currents (justifiable in
the ohmic region of the I –V curve and consistent with the
standard method for measuring capacitance). The true mem-
brane capacitance will therefore correspond to the estimate
Ce which minimizes the right-hand side of Eq. (6) evalua-
ted in some voltage range where the I –V curve is linear (in
practice ±1 mV from the resting potential). The quantity C
can also be found directly by solving Eq. (6) for C to yield

C = Var
[
Iapp

]
V

Covar
[ dV

dt , Iapp
]

V

(7)

where again, these two quantities are measured near a vol-
tage where the I –V curve is ohmic. Equations (6) and (7)
applied to the Wang–Buzsáki model in Fig. 1c yield a value
of C = 1.018 µF/cm2, which is very close to the true value of
C = 1µF/cm2.

Fitting to a non-linear IF model The dynamic I –V curve
provides a direct mapping between the membrane voltage
and the mean instantaneous value of the membrane current,
which can be related to the template for non-linear IF neu-
rons with the interpretation that F(V ) = −Idyn(V )/C . This
is shown in Fig. 1d in which the measured F(V ) (minus the
dynamic IV curve divided by capacitance) is clearly seen to
comprise a linear ohmic component in the subthreshold vol-
tage range −90 to −60mV followed by a sharp exponential
rise from −60 mV (this is clearly seen in the inset). This form
suggests that the exponential integrate-and-fire neuron

F(V ) = 1

τm

(
EL − V + ∆T e(V −VT )/∆T

)
(8)

could potentially provide an accurate fit. Such a fit, with para-
meters EL = −68.5 mV, τm = 3.3 ms, VT = −61.5 mV and
∆T = 4.0 mV, is plotted in Fig. 1d in red and shown to be
highly satisfactory.

Post-spike response and refractoriness It can be anticipated
that the transient activation of ionic conductance during an
action potential can alter significantly the cellular response

during the refractory period. These changes in response pro-
perties can be investigated by examining the ‘spike-triggered’
dynamic I –V curves, i.e., the I –V curves measured in small
time slices after a spike (Fig. 1e). Although the Wang–
Buzsáki model displays relatively little refractoriness, it is
possible to fit again the post-spike I –V curve to the EIF
form in Eq. (8), yielding a different set of the parameters
τm , EL , VT and ∆T for each of the time slices. These new
values define for each parameter a dynamics parametrized
by the time since the last output spike (Fig. 1f).

Refractory EIF model A refractory extension of the basic
EIF model (called the rEIF model), can be obtained by fit-
ting the post-spike dynamics of the EIF model parameters
plotted in Fig. 1f. In the case of the Wang–Buzsáki model,
all parameters could be fitted with a single exponential func-
tion, resulting in the following model

dV

dt
= F(V, τm, EL , VT ,∆T ) + Iapp

C
. (9)

1

τm
= 1

τ 0
m

+ a
τ−1

m
e
−(t−t sp)/τ

τ
−1
m (10)

EL = E0
L + aEL e−(t−t sp)/τEL (11)

VT = V 0
T + aVT e−(t−t sp)/τVT (12)

∆T = V 0
T + a∆T e−(t−t sp)/τ∆T (13)

where the function F is defined by Eq. (8), t sp is the time
of the last spike, and the superscript ‘0’ in (10)–(13) denotes
the pre-spike value of a parameter. In the present application,
the ultimate voltage threshold (at the top of the spike) was
taken to be Vth = +30 mV, and the voltage reset taken to
be the average voltage at the end of the refractory period,
Vre = −71.2 mV. The refractory period was taken slightly
longer than the typical duration of a spike (we used τref =
8 ms for the case of the WB model). An example trace of
this model is compared in Fig. 1g with the output of the
Wang–Buzsáki model generated with the same input current,
showing excellent agreement in both the subthreshold region
and the timing of spikes, with 96% of correctly predicted
spikes at 5 ms precision (2 spikes out of 55 were missed). Note
that we do not evaluate here the performance of the normal
EIF model with threshold and reset, which was addressed in
our previous publication (Badel et al. 2008) and gives results,
for physiological firing rates (<10 Hz) that are close to those
of the refractory model.

2.1 Results for cortical pyramidal cells

Figure 2 summarizes our previous results for cortical pyrami-
dal cells. In Fig. 2a the intrinsic currents are plotted against
the membrane voltage. The scatter plot of the intrinsic cur-
rent shown in Fig. 2a exhibits similar features as observed for
the Wang–Buzsáki model, albeit with a significantly higher
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Fig. 2 Application of the dynamic I –V method to layer-5 pyramidal
cells. a The intrinsic membrane current is plotted against the mem-
brane voltage (black symbols). The dynamic I –V curve (red) is clearly
seen to comprise a linear component in the subthreshold region fol-
lowed by a sharp activation in the region of spike initiation. Inset:
Examination of the variance of Iion near the resting potential in the
absence (black) or presence (red) of injected current suggest that the
majority of the variance comes from intrinsic noise. b The function
F(V ) = −Idyn(V )/C is plotted here (symbols) together with the EIF
model fit (red). Inset: The exponential rise of the spike generating
current is shown in a semi-log plot of F(V ) with the leak currents
subtracted. c Histograms of the EIF model parameters for a sample
(N = 12) of pyramidal cells, showing considerable heterogeneity in
the response properties of neurons in this population. d The cellular
capacitance calculated with our optimization method (see text) is com-
pared to the result of the standard current-pulse protocol, showing a

good agreement between the two methods. e Spike-triggered dynamic
I –V curves. The I –V curves measured in small time slices after a spike
are plotted together with the EIF fit (green) and the pre-spike I –V curve
as a reference (red). f Post-spike dynamics of the EIF model parame-
ters (symbols) together with the fits to an exponential model. While
conductance and spike threshold could be accurately fitted with a single
exponential, the variation in the equilibrium potential EL required two
exponential components for a good fit. The spike width ∆T did not
vary significantly for these cells. g Comparison of the prediction of the
rEIF model (green) with experimental data shows good agreement in
the subthreshold region and in the prediction of spike times. h Summary
of the performance of the rEIF model for the 12 cells investigated. Left:
Prediction of the firing rate. Top right: Histogram of the performance
measure. Bottom right: Voltage distribution for the rEIF model (green)
and the experimental data (black). The figure is adapted from (Badel
et al. 2008)

variability around the mean. Two processes can be identi-
fied that could contribute to this variability: (i) the projection
of a time-dependent quantity on the instantaneous voltage
whereas the ionic current Iion is a function dominated by the
voltage history due to the activation of voltage gated cur-
rents, or (ii) the amplification of the background noise due
to the voltage derivative in Eq. (4). As the dynamic I –V
curve can be expected to give an accurate approximation of
the intrinsic membrane current only if the contribution from
point (i) above is relatively insignificant, it is important to
weigh the relative contribution of these two possible sources
of variance. This can be investigated by examining the dis-

tribution of Iion measured when there is no injected current
and the voltage is at its rest, and comparing the distribution
when the voltage is fluctuating triggered to the same value of
the voltage. This comparison is shown in the inset to Fig. 2a
where it can be seen that the distribution of Iion when the vol-
tage is at rest (black lines) accounts for a significant propor-
tion (83% of the standard deviation) of the spread when the
voltage has a dynamics; this suggests that the overwhelming
proportion of the variability is due to point (ii) above—the
amplification of noise from the voltage derivative—and that
the underlying relation between Iion and voltage is relatively
sharp.
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The pre-spike I –V curves were very well fitted by the EIF
model. However, as is clearly seen in Fig. 2a,b, at the onset
of the spike the rise in the I –V curve is much sharper than
is observed in the Wang–Buzsáki model (with parameter ∆T

of the order of 1–2 mV, see Fig. 2c), and remains very close
to exponential over almost 4 decades (Fig. 2b, inset). The
range of parameters obtained for the 12 measured pyramidal
neurons, shown in Fig. 2c, suggests a significant degree of
heterogeneity in this population of cortical neurons.

As regards the measurement of the cellular capacitance,
the values obtained using Eq. (7) were consistent across dif-
ferent voltage traces from the same cell, with a coefficient of
variation of the order of a few percent. The validity of (7) was
further tested by comparing with the values obtained by using
the standard protocol of measuring the cellular capacitance
from the voltage response to small current pulses. For the
latter the capacitance was estimated by fitting the response
with an exponential and averaging over 4 trials. As is shown
in Fig. 2d, there is a good agreement between the results of
the two methods. Overall, the measured pyramidal cells exhi-
bited relatively high capacitance values (250±75 pF, n = 12
cells).

In contrast to the Wang–Buzsáki model, pyramidal cells
showed a long refractory period (up to ∼100 ms) during
which the cellular response changed considerably. This is
seen very clearly in the post-spike I –V curves shown in
Fig 2e. Interestingly, the post-spike I –V curves could still be
fitted to the EIF form in Eq. (8) allowing refractory properties
to be described in terms of the simple rEIF model (9)–(13).
The dynamics of the parameters are plotted in Fig. 2f for one
example cell, and consistently comprised: an increase in the
leak conductance gL , a biphasic response in the effective rest
voltage and, importantly, a significant increase in the spike
threshold VT . For pyramidal cells relatively little change was
seen in the spike width ∆T .

In terms of predictive power, the rEIF model derived from
fits to the steady-state and spike-triggered I –V curves was
highly satisfactory, with an average 83% of succesfully pre-
dicted spikes within a 5 ms window, relative to the instrinsic
reliability of the cells.

3 GABAergic interneurons

One of the potential applications of the dynamic I –V curve
is the rapid classification of cell type and response proper-
ties. To test whether different cell classes could be identi-
fied on the basis of their dynamic I –V curve and refractory
properties, we applied our method to cortical GABAergic
interneurons, and compared with the results obtained for
pyramidal cells. The results for interneurons are summari-
zed in Fig. 3. In general, the dynamic I –V curve for these
interneurons was surprisingly similar to those observed in

pyramidal cells, particularly for the response properties in
the run up to the spike. For this cell type also the exponential
integrate-and-fire model (8) matched the I –V curves accura-
tely as can be seen in Fig. 3a and with similar distributions of
the parameters (except for the lower membrane time constant
τm) as seen in Fig. 3b. For the refractory properties (Fig. 3c)
the behavior of the rest EL was notably different from the
pyramidal case and did not show the biphasic response seen
in Fig. 2b but rather a simple exponential relaxation from a
hyperpolarized reset. The other parameter that distinguished
the two cell types was the cellular capacitance (250 ± 75 pF
for pyramidal cells, n = 12, and 94±21 pF for interneurons,
n = 6) which is consistent with the smaller interneurons.
Although the variability in membrane time constant was less
significant than previously found for pyramidal cells (with
a CV of 12% as opposed to 32% for pyramidal cells), the
other cellular parameters showed considerable scatter (with
CVs of 22% for the distance to threshold VT − EL , and
27% for the spike width ∆T), suggesting a high degree of
inhomogeneity also in this population. It can also be noted
that the transient increase in the spike onset VT is smaller
for this fast-spiking cell (∼4 mV) than seen in the pyramidal
cell ∼15 mV. In terms of model performance, the predictions
of the corresponding rEIF models were again excellent (in
fact marginally better than for pyramidal cells) with an ave-
rage 96% of correctly predicted spikes relative to the intrinsic
reliability of the cells.

4 Application to conductance injection protocols

The dynamic I –V method can also be employed to des-
cribe the voltage dynamics of pyramidal cells under dynamic-
clamp conductance injection. To demonstrate this, we
injected layer-5 pyramidals with a mixture of excitatory and
inhibitory fluctuating conductances modeled as Ornstein–
Uhlenbeck processes with two distinct correlation times τe =
2 ms and τi = 10 ms. For conductance injection the applied
current is given by

Iapp(t) = ge(t)(Ee − V (t)) + gi (t)(Ei − V (t)), (14)

where ge and gi are the excitatory and inhibitory conduc-
tance waveforms, and the synaptic reversal potentials are
given by Ee = −10 mV and Ei = −70 mV. In this case,
the dynamic I –V curve was qualitatively similar to the case
of current injection. However, a second, slow exponential
activation was needed to accurately fit the I –V curve. This
is shown in Fig. 4a where the function F(V ) was modeled
as

F(V )= 1

τm

(
EL −V +∆T e(V−VT )/∆T +∆′

T e(V−V ′
T )/∆′

T

)
.

(15)
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Fig. 3 GABAergic cortical interneuron models derived using the dyna-
mic I –V methodology. a The function F(V ) = −Idyn(V )/C for a fast-
spiking interneuron is plotted (symbols) together with the EIF model
fit (red). Inset: The exponential rise of the spike generating current is
shown in a semi-log plot of F(V ) with the leak currents subtracted.
b Distribution of the EIF model parameters for a sample (N = 6) of
interneurons. The histograms overlap significantly with those of pyra-
midal cells shown in Fig 2. c Post-spike dynamics of the EIF model
parameters (symbols) together with the fits to an exponential model.

In the case of cortical interneurons all parameters could be fitted satis-
factorily with a single exponential. Note that the transient, post-spike
increase in the spike onset VT (∼4 mV) is smaller in this fast-spiking
interneuron than that for pyramidals (∼15 mV—see Fig. 2). d Compari-
son of the prediction of the rEIF model (green) with experimental data
shows close agreement in the subthreshold region and in the predic-
tion of spike times. e Summary of the performance of the rEIF model
for the 6 cells investigated. Top: Prediction of the firing rate. Bottom:
Histogram of the performance measure

The presence of an additional slow exponential component
to the activation is likely due to the reduced amplitude of
voltage fluctuations (from the diminished effective mem-
brane time constant). This resulted in voltage trajectories
that were concentrated close to the region of spike initia-
tion, making a more detailed description of action potential
onset dynamics necessary in order to correctly predict the
timing of spikes. The analysis of the refractory properties
yielded results consistent with the case of current injection,
with changes in the membrane time constant, equilibrium
potential and spike initiation threshold. For simplicity, the
parameters ∆T , VT − V ′

T and ∆′
T were taken as constant in

the fitting of the post-spike I –V curves (Fig. 4b).
The accuracy of the model at predicting spike timing for

this particular example was slightly lower than in the current-
clamp case. Overall, 63% of action potentials were correctly
predicted within a 5 ms window, whereas on average 83%
were correctly predicted in the current-clamp case, com-
pared to the intrinsic reliability of the cells (see Appen-
dix). Although the data set, comprising only one pyramidal
cell, does not allow for a systematic analysis of the perfor-
mance, these results clearly demonstrate the applicability of
the dynamic I –V curve method to conductance injection pro-
tocols.

5 Discussion

We used the dynamic I –V curve method to characterize the
response properties of neocortical layer-5 pyramidal cells and
GABAergic interneurons in current-clamp mode and additio-
nally demonstrated that the method can be used in dynamic-
clamp conductance-injection protocols. For interneurons, we
found that the dynamic I –V method yields results of similar
quality to those previously reported for pyramidal cells. In
particular, we find that the refractory exponential integrate-
and-fire model is able to predict both the subthreshold voltage
and the timing of spikes highly accurately. The fast-spiking
interneuron was characterized by a smaller cellular capaci-
tance (∼100 pF) than pyramidals, a shorter membrane time
constant (∼10 ms) and the lack of a biphasic response in the
effective equilibrium potential during the refractory period.
Other parameters showed significant overlap with the values
obtained for pyramidal cells and a similar spread of para-
meter values in the studied sample of interneurons was also
seen.

The comparison of the Wang–Buzsáki model with the
experimental results highlights two interesting facts. First,
the onset of action potentials in the model is much slower than
observed in the experimental data, consistent with previous
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Fig. 4 Application of the dynamic I –V method with conductance
injection. a The function F(V ) = −Idyn(V )/C is plotted (symbols)
together with the fit (red) to the function (14). Inset: Two exponential
components are clearly seen in a semi-log plot of F(V ) with the leak
currents subtracted. b Post-spike dynamics of the EIF model parame-
ters (symbols) together with the fits to an exponential model. The time-

dependent resting potential shows a clear biphasic response as was seen
for layer-5 pyramidals in the current-injection protocol. c Comparison
of the prediction of the rEIF model (green) with experimental data again
shows good agreement in the subthreshold region and in the prediction
of spike times

reports of ‘kink’-like spike initiation (Naundorf et al. 2006;
McCormick et al. 2007). Second, the Wang–Buzsáki model
showed very little refractoriness in contrast to the experimen-
tal data where the refractory properties were more pronoun-
ced and lasted significantly longer. It would be interesting
to determine how much this discrepancy is accounted for
by the presence of additional voltage-gated channels such as
adaptation currents or by the extended spatial structure of
neurons. As a related point, it would be interesting to inves-
tigate the influence of multiple action potentials on the dyna-
mics of the EIF model parameters. In this paper, only the
influence of the last action potential was considered. Howe-
ver, it is possible that multiple-spike effects will dominate
the response at higher firing rates.

In the case of dynamic-clamp conductance injection we
found that the I –V curve was best fitted by a non-linear
integrate-and-fire model that comprised two exponential
components: the sharp exponential activation associated with
the spike-generating sodium current is preceded by a slow
inward rectification that is also very close to exponential. The
model derived from the I –V curve was also able to predict
the timing of spikes with a satisfactory level of accuracy com-
pared with the intrinsic reliability of the neuron, although for
this cell the model performance was marginally lower than
typically obtained in the current clamp case. The proximity of

the trajectories to the threshold for the example treated here
suggests that the lower performance might be attributable
to the oversimplified description of action-potential onset
dynamics that is inherent in the one-dimensional EIF model.
This is backed up by preliminary analysis we have performed
on a model that includes inactivation of the sodium current
(details not shown). Further experiments would be needed to
verify this hypothesis.

Also seen was that the substantial degree of inhomoge-
neity in the response properties, previously observed for
pyramidal cells (Badel et al. 2008), was also found here for
cortical interneurons. Since the majority of network-level
models assume identical properties for component cells, it
would be interesting to investigate how the presence of inho-
mogeneities could affect collective behaviors, such as transi-
tions to oscillatory states (Brunel and Hakim 1999; Gigante
et al. 2007), in networks of excitatory and inhibitory neurons.

Transient increase in spike onset A key aspect of the refrac-
tory response quantified by the dynamic I –V curve methodo-
logy was the transient increase in the spike-onset parameter
VT following an action potential. Though this feature was
seen in both pyramidal and fast spiking interneurons it is
interesting to note that the relative magnitudes of the effect
were quite different. Labelling the baseline spike-onset as
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VT 0 and the additional transient increase as VT 1 we have, loo-
king at Figs. 2f and 3c, for pyramidal cells a typical distance
to threshold of VT 0 − EL ∼ 10 mV and a transient increase
of VT 1 ∼15 mV, whereas for interneurons these quantites are
VT 0 − EL ∼ 24 mV and a transient increase of VT 1 ∼ 4 mV.
If one compares the relative increase VT 1/(VT 0 − EL) for
these two cells we get a value for pyramidals of 150%, but
for the fast-spiking interneuron the relative increase is only
17%. This distinction could well underlie the ability of such
fast-spiking cells to emit closely spaced action potentials.
Furthermore, in the context of mathematical approaches to
the transient spike-onset, it is worth noting the surprising
fact that the two-dimensional system (voltage and dynamic
threshold VT (t)) is fully solvable in certain conditions. The
corresponding equations are

τL V̇ = EL − V + ∆T e(V −VT )/∆T (16)

where

VT = VT 0 + VT 1e−t/τT (17)

where it is assumed the spike occured at t = 0 so that initially
V = Vre. If the time constants are identical τL = τT then
a simple transformation W = V − VT 1e−t/τT reduces the
dynamics to an effective one-dimensional EIF model

τL Ẇ = EL − W + ∆T e(W−VT 0)/∆T (18)

with a constant threshold for spike-onset VT 0 and a lower
reset Wre = Vre − VT 1. A similar transformation was first
identified for the Leaky IF model (Lindner and Longtin 2005)
where it was also demonstrated that even for cases where
τL �= τT a perturbative approach can be used to calcu-
late many of the response properties of Leaky IF neurons
with decaying thresholds. It would be worthwhile to further
explore the extension of this to the two-variable EIF model
given by Eqs. (16, 17) particularly given its simplicity and
direct experimental relevance.

Appendix: Experimental methods

Current-clamp recordings Experimental methods for the
current-clamp protocol were identical for both pyramidal
cells and interneurons. Details of the methods are available
in a previous publication (Badel et al. 2008). Briefly, double
somatic whole cell recordings were obtained from layer-5
pyramidal cells and interneurons, with one pipette injecting
the current while the other monitored the voltage. The injec-
ted current waveforms were constructed from two summed
Onstein–Uhlenbeck processes with time constants τfast =
3 ms, τslow = 10 ms, and a range of means and variances
were explored. All currents were preceded and followed by
a 3-second null stimulus used to assess the amount of back-
ground noise, and during which two small square current

pulses (one positive and one negative) were applied to allow
for the measurement of the cellular capacitance.

Dynamic-clamp recordings For this protocol, we used the
publicly available data from Challenge A of the Quantita-
tive Single-Neuron Modeling Competition [see Jolivet et al.
(2008a,b) for details on the competition and experimental
methods]. The data was acquired from a pyramidal neuron
of the rat somatosensory cortex via two-electrode somatic
patch clamp. The injected current was of the form

Iapp(t) = ge(t)(Ee − V (t)) + gi (t)(Ei − V (t)), (19)

where the voltage V (t) was measured in real-time via the
second electrode. The conductance waveforms consisted of
Ornstein–Uhlenbeck processes with correlation times τe =
2 ms, τi = 10 ms; the reversal potentials for excitation and
inhibition were Ee = −10 mV, Ei = −70 mV.

Performance measure To facilitate comparison with pre-
viously published work, we use the ‘coincidence factor’ Γ

(Gerstner and Kistler 2002) as a measure of performance.
This coefficient takes into account both the overlap between
two spike trains and the similarity in the firing rate. It is defi-
ned by

Γ = Ncoinc − 〈Ncoinc〉
0.5(Nmodel + Nneuron)

1

N (20)

where Ncoinc is the number of coincidences with precision
∆, 〈Ncoinc〉 = 2 f ∆Nneuron is the number of expected acci-
dental coincidences generated by a Poisson process with the
same firing rate f as the neuron, Nneuron and Nmodel are
the number of spikes in the spike trains of the neuron and the
model, and N is a normalization factor. In this paper, only
ratios Γ/Γ ′ are considered, where Γ evaluates the overlap
between the prediction of the model and a target experimen-
tal spike train, and Γ ′ is calculated between the target spike
train and a second experimental recording obtained with the
same driving current. Only pairs of trials with an experimen-
tal reliability Γ ′ > 0.75 were used in the analysis.

Wang–Buzsáki model The Wang–Buzsáki model (Wang and
Buzsáki 1996) is defined by

C
dV

dt
= −gL(V − EL) − gNam3h(V − ENa)

− gKn4(V − EK) + Iapp + Inoise (21)

with gating variables n, m and h obeying a first-order dyna-
mics,

τx (V )ẋ = x∞(V ) − x (22)
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for x = n, m, h, and τx (V ) = 1/(αx (V )+βx (V )), x∞(V ) =
αx (V )/(αx (V )+βx (V )), and the rate constants are given by

αm(V ) = −0.1(V + 35)

e−0.1(V +35) − 1
(23)

βm(V ) = 4e−(V +60)/18 (24)

αh(V ) = 0.07e−(V +58)/20 (25)

βn(V ) = (1 + e−0.1(V +28))−1 (26)

αn(V ) = −0.01(V + 34)

e−0.1(V +34) − 1
(27)

βn(V ) = 0.125e−(V +44)/80. (28)

For the conductances and reversal potentials, we used gNa =
120, ENa = 55, gK = 36, EK = −72, gL = 0.3 and EL =
−68. The term Inoise is included here to account for intrinsic
background noise, and is modeled as Gaussian white noise,
Inoise = σξ(t), where 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t ′)〉 = δ(t −t ′), and
we took σ = 0.1 to obtain a level of noise that is comparable
to the one observed experimentally.
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