Dust particles immersed within a plasma environment, such as those in
protostellar clouds, planetary rings or cometary environments, will acquire an
electric charge. If the ratio of the inter-particle potential energy to the
average kinetic energy is high enough the particles will form either a "liquid"
structure with short-range ordering or a crystalline structure with long range
ordering. Many experiments have been conducted over the past several years on
such colloidal plasmas to discover the nature of the crystals formed, but more
work is needed to fully understand these complex colloidal systems. Most
previous experiments have employed monodisperse spheres to form Coulomb
crystals. However, in nature (as well as in most plasma processing
environments) the distribution of particle sizes is more randomized and
disperse. This paper reports experiments which were carried out in a GEC rf
reference cell modified for use as a dusty plasma system, using varying sizes
of particles to determine the manner in which the correlation function depends
upon the overall dust grain size distribution. (The correlation function
determines the overall crystalline structure of the lattice.) Two dimensional
plasma crystals were formed of assorted glass spheres with specific size
distributions in an argon plasma. Using various optical techniques, the pair
correlation function was determined and compared to those calculated
numerically.Comment: 6 pages, Presented at COSPAR '0