2,090 research outputs found

    University of Nebraska Five-Year Strategy, Revised August 12, 2020

    Get PDF
    The University of Nebraska Five-Year Strategy: Trust, Predictability, and Positive Outcomes for Nebraskans In February 2020, the newly named president of the University of Nebraska system, Ted Carter, gathered a diverse 28-member team of students, faculty, staff, and administrators to help chart the path forward for Nebraska’s public university. The team’s goal: At a time of great change in higher education, lay out a vision for what the future should look like for the University of Nebraska. Broad themes quickly emerged, including student access and success, excellence in teaching and research, diversity and inclusion, partnerships, and fiscal effectiveness. Then COVID-19 hit, forcing a pause in the team’s work. The ensuing months showed that the initial priorities identified by the team were not only still relevant, but more important than ever in defining the future of higher education. From that early work has emerged a five-year strategy for growth and success across the four-campus University of Nebraska system. In addition to the strategic planning team, Carter engaged alumni and donors, elected leaders, leaders in business and agriculture, the Board of Regents, NU senior leadership, and others in conversations about the University’s future. The resulting strategy is built around several key principles: The value of higher education is clear and growing. Nebraska’s success is tied to that of its University. Students come first. The University of Nebraska should be the best place in the country to be a student, providing high-quality, affordable, accessible education that prioritizes students’ mental and physical health and prepares them for post-graduation success. Our people are our greatest asset. We will invest accordingly. We have a responsibility to make the best use of every dollar Nebraskans entrust to us. Themes of equity and inclusion touch everything we do. We will be a University for everyone—successful only when all voices are heard. Finally, Nebraskans should know what to expect from their University. We must work every day to maintain the trust and confidence of the people of our state

    Hidden in the Middle : Culture, Value and Reward in Bioinformatics

    Get PDF
    Bioinformatics - the so-called shotgun marriage between biology and computer science - is an interdiscipline. Despite interdisciplinarity being seen as a virtue, for having the capacity to solve complex problems and foster innovation, it has the potential to place projects and people in anomalous categories. For example, valorised 'outputs' in academia are often defined and rewarded by discipline. Bioinformatics, as an interdisciplinary bricolage, incorporates experts from various disciplinary cultures with their own distinct ways of working. Perceived problems of interdisciplinarity include difficulties of making explicit knowledge that is practical, theoretical, or cognitive. But successful interdisciplinary research also depends on an understanding of disciplinary cultures and value systems, often only tacitly understood by members of the communities in question. In bioinformatics, the 'parent' disciplines have different value systems; for example, what is considered worthwhile research by computer scientists can be thought of as trivial by biologists, and vice versa. This paper concentrates on the problems of reward and recognition described by scientists working in academic bioinformatics in the United Kingdom. We highlight problems that are a consequence of its cross-cultural make-up, recognising that the mismatches in knowledge in this borderland take place not just at the level of the practical, theoretical, or epistemological, but also at the cultural level too. The trend in big, interdisciplinary science is towards multiple authors on a single paper; in bioinformatics this has created hybrid or fractional scientists who find they are being positioned not just in-between established disciplines but also in-between as middle authors or, worse still, left off papers altogether

    ‘Midwives Overboard!’ Inside their hearts are breaking, their makeup may be flaking but their smile still stays on

    Get PDF
    PROBLEM: Midwifery practice is emotional and, at times, traumatic work. Cumulative exposure to this, in an unsupportive environment can result in the development of psychological and behavioural symptoms of distress. BACKGROUND: As there is a clear link between the wellbeing of staff and the quality of patient care, the issue of midwife wellbeing is gathering significant attention. Despite this, it can be rare to find a midwife who will publically admit to how much they are struggling. They soldier on, often in silence. AIM: This paper aims to present a narrative review of the literature in relation to work-related psychological distress in midwifery populations. Opportunities for change are presented with the intention of generating further conversations within the academic and healthcare communities. METHODS: A narrative literature review was conducted. FINDINGS: Internationally, midwives experience various types of work-related psychological distress. These include both organisational and occupational sources of stress. DISCUSSION: Dysfunctional working cultures and inadequate support are not conducive to safe patient care or the sustained progressive development of the midwifery profession. New research, revised international strategies and new evidence based interventions of support are required to support midwives in psychological distress. This will in turn maximise patient, public and staff safety. CONCLUSIONS: Ethically, midwives are entitled to a psychologically safe professional journey. This paper offers the principal conclusion that when maternity services invest in the mental health and wellbeing of midwives, they may reap the rewards of improved patient care, improved staff experience and safer maternity services

    Multiple Loci Are Associated with White Blood Cell Phenotypes

    Get PDF
    White blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count—6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count—17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count—6p21, 19p13 at EPS15L1; monocyte count—2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2), including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across populations of diverse ancestral backgrounds

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    Intermittent preventive treatment for malaria in pregnancy in Africa: What's new, what's needed?

    Get PDF
    Falciparum malaria is an important cause of maternal, perinatal and neonatal morbidity in high transmission settings in Sub-Saharan Africa. Intermittent preventive treatment with sulphadoxine-pyrimethamine (SP-IPT) has proven efficacious in reducing the burden of pregnancy-associated malaria but increasing levels of parasite resistance mean that the benefits of national SP-IPT programmes may soon be seriously undermined in much of the region. Hence, there is an urgent need to develop alternative drug regimens for IPT in pregnancy. This paper reviews published safety and efficacy data on various antimalarials and proposes several candidate combination regimens for assessment in phase II/III clinical trials

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Examining the generalizability of research findings from archival data

    Get PDF
    This initiative examined systematically the extent to which a large set of archival research findings generalizes across contexts. We repeated the key analyses for 29 original strategic management effects in the same context (direct reproduction) as well as in 52 novel time periods and geographies; 45% of the reproductions returned results matching the original reports together with 55% of tests in different spans of years and 40% of tests in novel geographies. Some original findings were associated with multiple new tests. Reproducibility was the best predictor of generalizability—for the findings that proved directly reproducible, 84% emerged in other available time periods and 57% emerged in other geographies. Overall, only limited empirical evidence emerged for context sensitivity. In a forecasting survey, independent scientists were able to anticipate which effects would find support in tests in new samples

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe
    corecore