104 research outputs found
On tropical forests and their pests
pre-printBiologists have long been intrigued by the diversity of tropical forests, where 1 hectare may hold more than 650 tree species-more than in all of Canada and the continental United States. Eco- logical theory suggests that if species are too similar in their resource use, one will out- compete the others; hence, neighboring species must exploit different niches if they are to coexist. However, given that plants in one hectare of rainforest experience very similar physical environments, ecologists have struggled to demonstrate sufficient niche differentiation to support such high diversity (1). In addition to the puzzle of high local diversity, tropical forests also have high species richness overall. Recent studies show that interactions with pests may promote local plant diversity, accelerate plant evolution, and enhance the proliferation of species over evolutionary time
The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West
BACKGROUND: Because moisture and temperature influence the growth of fungi, characterizing weather conditions favorable for fungi may be used to predict the abundance and richness of fungi in habitats with different climate conditions. To estimate habitat favorability to fungi, we examined the relationship of fungal abundance and species richness to various weather and environmental parameters in the Intermountain West. We cultured fungi from air and leaf surfaces, and collected continuous temperature and relative humidity measures over the growing season at 25 sites. RESULTS: Fungal richness was positively correlated with fungal abundance (r = 0.75). Measures of moisture availability, such as relative humidity and vapor pressure deficit, explained more of the variance in fungal abundance and richness than did temperature. Climate measurements from nearby weather stations were good predictors of fungal abundance and richness but not as good as weather measurements obtained in the field. Weather variables that took into account the proportion of time habitats experienced favorable or unfavorable relative humidity and temperatures were the best predictors, explaining up to 56% of the variation in fungal abundance and 72% for fungal richness. CONCLUSION: Our results suggest that the abundance and richness of fungi in a habitat is limited by the duration of unfavorable weather conditions. Because fungal pathogens likely have similar abiotic requirements for growth as other fungi, characterizing weather conditions favorable for fungi also may be used to predict the selective pressures imposed by pathogenic fungi on plants in different habitats
Inter-species variation in the oligomeric states of the higher plant Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase
In darkened leaves the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form a regulatory multi-enzyme complex with the small chloroplast protein CP12. GAPDH also forms a high molecular weight regulatory mono-enzyme complex. Given that there are different reports as to the number and subunit composition of these complexes and that enzyme regulatory mechanisms are known to vary between species, it was reasoned that protein-protein interactions may also vary between species. Here, this variation is investigated. This study shows that two different tetramers of GAPDH (an A2B2 heterotetramer and an A4 homotetramer) have the capacity to form part of the PRK/GAPDH/CP12 complex. The role of the PRK/GAPDH/CP12 complex is not simply to regulate the 'non-regulatory' A4 GAPDH tetramer. This study also demonstrates that the abundance and nature of PRK/GAPDH/CP12 interactions are not equal in all species and that whilst NAD enhances complex formation in some species, this is not sufficient for complex formation in others. Furthermore, it is shown that the GAPDH mono-enzyme complex is more abundant as a 2(A2B2) complex, rather than the larger 4(A2B2) complex. This smaller complex is sensitive to cellular metabolites indicating that it is an important regulatory isoform of GAPDH. This comparative study has highlighted considerable heterogeneity in PRK and GAPDH protein interactions between closely related species and the possible underlying physiological basis for this is discussed. © 2011 The Author(s)
The role of plant secondary metabolites in shaping regional and local plant community assembly
The outstanding diversity of Amazonian forests is predicted to be the result of several processes. While tree lineages have dispersed repeatedly across the Amazon, interactions between plants and insects may be the principal mechanism structuring the communities at local scales. Using metabolomic and phylogenetic approaches, we investigated the patterns of historical assembly of plant communities across the Amazon based on the Neotropical genus of trees Inga (Leguminosae) at four, widely separated sites. Our results show a low degree of phylogenetic structure and a mixing of chemotypes across the whole Amazon basin, suggesting that although biogeography may play a role, the metacommunity for any local community in the Amazon is the entire basin. Yet, local communities are assembled by ecological processes, with the suite of Inga at a given site more divergent in chemical defences than expected by chance Synthesis. To our knowledge, this is the first study to present metabolomic data for nearly 100 species in a diverse Neotropical plant clade across the whole Amazonia. Our results demonstrate a role for plantâherbivore interactions in shaping the clade's community assembly at a local scale, and suggest that the high alpha diversity in Amazonian tree communities must be due in part to the interactions of diverse tree lineages with their natural enemies providing a high number of niche dimension
Macroevolutionary patterns in overexpression of tyrosine:An antiâherbivore defence in a speciose tropical tree genus, Inga (Fabaceae)
This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.1.Plant secondary metabolites are a key defence against herbivores, and their evolutionary origin is likely from primary metabolites. Yet for this to occur, an intermediate step of overexpression of primary metabolites would need to confer some advantage to the plant. Here, we examine the evolution of overexpression of the essential amino acid, Lâtyrosine and its role as a defence against herbivores.
2.We examined overexpression of tyrosine in 97 species of Inga (Fabaceae), a genus of tropical trees, at five sites throughout the Neotropics. We predicted that tyrosine could act as an antiâherbivore defence because concentrations of 4% tyrosine in artificial diets halved larval growth rates. We also collected insect herbivores to determine if tyrosine and its derivatives influenced host associations.
3.Overexpression of tyrosine was only present in a single lineage comprising 21 species, with concentrations ranging from 5% to 20% of the leaf dry weight. Overexpression was pronounced in expanding but not in mature leaves. Despite laboratory studies showing toxicity of Lâtyrosine, Inga species with tyrosine suffered higher levels of herbivory. We therefore hypothesize that overexpression is only favoured in species with less effective secondary metabolites. Some tyrosineâproducing species also contained secondary metabolites that are derived from tyrosine: tyrosineâgallates, tyramineâgallates and DOPAâgallates. Elevated levels of transcripts of prephenate dehydrogenase, an enzyme in the tyrosine biosynthetic pathway that is insensitive to negative feedback from tyrosine, were found only in species that overexpress tyrosine or related gallates. Different lineages of herbivores showed contrasting responses to the overexpression of tyrosine and its derived secondary metabolites in their host plants.
4.Synthesis. We propose that overexpression of some primary metabolites can serve as a chemical defence against herbivores, and are most likely to be selected for in species suffering high herbivory due to less effective secondary metabolites. Overexpression may be the first evolutionary step in the transition to the production of more derived secondary metabolites. Presumably, derived compounds would be more effective and less costly than free tyrosine as antiâherbivore defences.National Science Foundatio
Chemocoding as an identification tool where morphological- and DNA-based methods fall short:Inga as a case study
This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordThe need for species identification and taxonomic discovery has led to the development of innovative technologies for largeâscale plant identification. DNA barcoding has been useful, but fails to distinguish among many species in speciesârich plant genera, particularly in tropical regions. Here, we show that chemical fingerprinting, or âchemocodingâ, has great potential for plant identification in challenging tropical biomes.
Using untargeted metabolomics in combination with multivariate analysis, we constructed speciesâlevel fingerprints, which we define as chemocoding. We evaluated the utility of chemocoding with species that were defined morphologically and subject to nextâgeneration DNA sequencing in the diverse and recently radiated neotropical genus Inga (Leguminosae), both at single study sites and across broad geographic scales.
Our results show that chemocoding is a robust method for distinguishing morphologically similar species at a single site and for identifying widespread species across continentalâscale ranges.
Given that species are the fundamental unit of analysis for conservation and biodiversity research, the development of accurate identification methods is essential. We suggest that chemocoding will be a valuable additional source of data for a quick identification of plants, especially for groups where other methods fall short
Tracking of Host Defenses and Phylogeny During the Radiation of Neotropical Inga-Feeding Sawflies (Hymenoptera; Argidae)
This is the final version. Available from Frontiers Media via the DOI in this recordCoevolutionary theory has long predicted that the arms race between plants and herbivores is a major driver of host selection and diversification. At a local scale, plant defenses contribute significantly to the structure of herbivore assemblages and the high alpha diversity of plants in tropical rain forests. However, the general importance of plant defenses in host associations and divergence at regional scales remains unclear. Here, we examine the role of plant defensive traits and phylogeny in the evolution of host range and species divergence in leaf-feeding sawflies of the family Argidae associated with Neotropical trees in the genus Inga throughout the Amazon, the Guiana Shield and Panama. Our analyses show that the phylogenies of both the sawfly herbivores and their Inga hosts are congruent, and that sawflies radiated at approximately the same time, or more recently than their Inga hosts. Analyses controlling for phylogenetic effects show that the evolution of host use in the sawflies associated with Inga is better correlated with Inga chemistry than with Inga phylogeny, suggesting a pattern of delayed host tracking closely tied to host chemistry. Finally, phylogenetic analyses show that sister species of Inga-sawflies are dispersed across the Neotropics, suggesting a role for allopatric divergence and vicariance in Inga diversification. These results are consistent with the idea that host defensive traits play a key role not only in structuring the herbivore assemblages at a single site, but also in the processes shaping host association and species divergence at a regional scale
Absence of system xcâ» on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis
Background: Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System x(c)- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration.
Methods: Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system x(c)-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT(-/-)) mice and irradiated mice reconstituted in xCT(-/-) bone marrow (BM), to their proper wild type (xCT(+/+)) controls.
Results: xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT(+/+) mice, xCT(-/-) mice were equally susceptible to EAE, whereas mice transplanted with xCT(-/-) BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected.
Conclusions: Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system x(c)- on immune cells invading the CNS participates to EAE. Since a total loss of system x(c)- had no net beneficial effects, these results have important implications for targeting system x(c)- for treatment of MS
- âŠ