198 research outputs found

    OMEGAPIX: 3D integrated circuit prototype dedicated to the ATLAS upgrade Super LHC pixel project

    Get PDF
    In late 2008, an international consortium for development of vertically integrated (3D) readout electronics was created to explore features available from this technology. In this paper, the OMEGAPIX circuit is presented. It is the first front-end ASIC prototype designed at LAL in 3D technology. It has been submitted on May 2009. At first, a short reminder of 3D technology is presented. Then the IC design is explained: analogue tier, digital tier and testability

    Opto-PCB: Three demonstrators for optical interconnections

    Get PDF
    We report on a research project targeting optical waveguide integrated PCBs conducted within the European FP6 Network of Excellence on Micro-Optics NEMO. For three identified feature requests we have built three specific demonstrators respectively addressing the integration of active components, the fabrication of peripheral fibre ribbons and the integration of multiple layers of waveguides on the board

    Discrete Out-of-Plane Coupling Components for Printed Circuit Board-Level Optical Interconnections

    Full text link

    Matrixes of unconventional micro-optical components molded with etched silicon

    Get PDF
    This paper reports on a process to create microlenses characterized by unconventional footprints, spherical profiles and a wide range of sizes. Fabricated shapes such as squares, rectangles, ellipses, triangles and hexagons are tested alone as well as in matrix with high fulfill factors. The technique is based on molds from which microlenses are fabricated by UV-molding replication. The molds are produced by silicon wet isotropic etching in an acid solution. The process is mainly steered by temperature and etching concentration. The use of the proposed technology opens a wide range of geometries allowing the fabrication of microlenses matrices with high fulfill factors as well as microlenses for beam-shaping

    Deterministic polarization chaos from a laser diode

    Full text link
    Fifty years after the invention of the laser diode and fourty years after the report of the butterfly effect - i.e. the unpredictability of deterministic chaos, it is said that a laser diode behaves like a damped nonlinear oscillator. Hence no chaos can be generated unless with additional forcing or parameter modulation. Here we report the first counter-example of a free-running laser diode generating chaos. The underlying physics is a nonlinear coupling between two elliptically polarized modes in a vertical-cavity surface-emitting laser. We identify chaos in experimental time-series and show theoretically the bifurcations leading to single- and double-scroll attractors with characteristics similar to Lorenz chaos. The reported polarization chaos resembles at first sight a noise-driven mode hopping but shows opposite statistical properties. Our findings open up new research areas that combine the high speed performances of microcavity lasers with controllable and integrated sources of optical chaos.Comment: 13 pages, 5 figure

    Optical spectral signatures of liquids by means of fiber optic technology for product and quality parameter identification

    Get PDF
    Absorption spectroscopy in the wide 200-1700 nm spectral range is carried out by means of optical fiber instrumentation to achieve a digital mapping of liquids for the prediction of important quality parameters. Extra virgin olive oils from Italy and lubricant oils from turbines with different degrees of degradation were considered as ‘case studies’. The spectral data were processed by means of multivariate analysis so as to obtain a correlation to quality parameters. In practice, the wide range absorption spectra were considered as an optical signature of the liquids from which to extract product quality information. The optical signatures of extra virgin olive oils were used to predict the content of the most important fatty acids. The optical signatures of lubricant oils were used to predict the concentration of the most important parameters for indicating the oil’s degree of degradation, such as TAN, JOAP anti-wear index, and water content

    BAC array CGH in patients with Velocardiofacial syndrome-like features reveals genomic aberrations on chromosome region 1q21.1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microdeletion of the chromosome 22q11.2 region is the most common genetic aberration among patients with velocardiofacial syndrome (VCFS) but a subset of subjects do not show alterations of this chromosome region.</p> <p>Methods</p> <p>We analyzed 18 patients with VCFS-like features by comparative genomic hybridisation (aCGH) array and performed a face-to-face slide hybridization with two different arrays: a whole genome and a chromosome 22-specific BAC array. Putative rearrangements were confirmed by FISH and MLPA assays.</p> <p>Results</p> <p>One patient carried a combination of rearrangements on 1q21.1, consisting in a microduplication of 212 kb and a close microdeletion of 1.15 Mb, previously reported in patients with variable phenotypes, including mental retardation, congenital heart defects (CHD) and schizophrenia. While 326 control samples were negative for both 1q21.1 rearrangements, one of 73 patients carried the same 212-kb microduplication, reciprocal to TAR microdeletion syndrome. Also, we detected four copy number variants (CNVs) inherited from one parent (a 744-kb duplication on 10q11.22; a 160 kb duplication and deletion on 22q11.21 in two cases; and a gain of 140 kb on 22q13.2), not present in control subjects, raising the potential role of these CNVs in the VCFS-like phenotype.</p> <p>Conclusions</p> <p>Our results confirmed aCGH as a successful strategy in order to characterize additional submicroscopic aberrations in patients with VCF-like features that fail to show alterations in 22q11.2 region. We report a 212-kb microduplication on 1q21.1, detected in two patients, which may contribute to CHD.</p

    Contribution du CNRS/IN2P3 à l'upgrade d'ATLAS. Proposition soumise au Conseil Scientifique de l'IN2P3 du 21 Juin 2012

    Get PDF

    Network Analysis of Differential Expression for the Identification of Disease-Causing Genes

    Get PDF
    Genetic studies (in particular linkage and association studies) identify chromosomal regions involved in a disease or phenotype of interest, but those regions often contain many candidate genes, only a few of which can be followed-up for biological validation. Recently, computational methods to identify (prioritize) the most promising candidates within a region have been proposed, but they are usually not applicable to cases where little is known about the phenotype (no or few confirmed disease genes, fragmentary understanding of the biological cascades involved). We seek to overcome this limitation by replacing knowledge about the biological process by experimental data on differential gene expression between affected and healthy individuals. Considering the problem from the perspective of a gene/protein network, we assess a candidate gene by considering the level of differential expression in its neighborhood under the assumption that strong candidates will tend to be surrounded by differentially expressed neighbors. We define a notion of soft neighborhood where each gene is given a contributing weight, which decreases with the distance from the candidate gene on the protein network. To account for multiple paths between genes, we define the distance using the Laplacian exponential diffusion kernel. We score candidates by aggregating the differential expression of neighbors weighted as a function of distance. Through a randomization procedure, we rank candidates by p-values. We illustrate our approach on four monogenic diseases and successfully prioritize the known disease causing genes
    • …
    corecore