24 research outputs found
Quantitative detection of iodine in the stratosphere
Oceanic emissions of iodine destroy ozone, modify oxidative capacity, and can form new particles in the troposphere. However, the impact of iodine in the stratosphere is highly uncertain due to the lack of previous quantitative measurements. Here, we report quantitative measurements of iodine monoxide radicals and particulate iodine (Iy,part) from aircraft in the stratosphere. These measurements support that 0.77 ± 0.10 parts per trillion by volume (pptv) total inorganic iodine (Iy) is injected to the stratosphere. These high Iy amounts are indicative of active iodine recycling on ice in the upper troposphere (UT), support the upper end of recent Iy estimates (0 to 0.8 pptv) by the World Meteorological Organization, and are incompatible with zero stratospheric iodine injection. Gasphase iodine (Iy,gas) in the UT (0.67 ± 0.09 pptv) converts to Iy,part sharply near the tropopause. In the stratosphere, IO radicals remain detectable (0.06 ± 0.03 pptv), indicating persistent Iy,part recycling back to Iy,gas as a result of active multiphase chemistry. At the observed levels, iodine is responsible for 32% of the halogen-induced ozone loss (bromine 40%, chlorine 28%), due primarily to previously unconsidered heterogeneous chemistry. Anthropogenic (pollution) ozone has increased iodine emissions since preindustrial times (ca. factor of 3 since 1950) and could be partly responsible for the continued decrease of ozone in the lower stratosphere. Increasing iodine emissions have implications for ozone radiative forcing and possibly new particle formation near the tropopause.Fil: Koenig, Theodore K.. State University of Colorado at Boulder; Estados UnidosFil: Baidar, Sunil. State University of Colorado at Boulder; Estados UnidosFil: Campuzano Jost, Pedro. State University of Colorado at Boulder; Estados UnidosFil: Cuevas, Carlos Alberto. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Dix, Barbara. State University of Colorado at Boulder; Estados UnidosFil: Fernandez, Rafael Pedro. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: Guo, Hongyu. State University of Colorado at Boulder; Estados UnidosFil: Hall, Samuel R.. National Center for Atmospheric Research; Estados UnidosFil: Kinnison, Douglas. National Center for Atmospheric Research; Estados UnidosFil: Nault, Benjamin A.. State University of Colorado at Boulder; Estados UnidosFil: Ullmann, Kirk. National Center for Atmospheric Research; Estados UnidosFil: Jimenez, Jose L.. State University of Colorado at Boulder; Estados UnidosFil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Volkamer, Rainer. State University of Colorado at Boulder; Estados Unido
Recommended from our members
BrO and inferred Br-y profiles over the western Pacific: relevance of inorganic bromine sources and a Br-y minimum in the aged tropical tropopause layer
We report measurements of bromine monoxide (BrO) and use an observationally constrained chemical box model to infer total gas-phase inorganic bromine (Bry) over the tropical western Pacific Ocean (tWPO) during the CONTRAST field campaign (January–February 2014). The observed BrO and inferred Bry profiles peak in the marine boundary layer (MBL), suggesting the need for a bromine source from sea-salt aerosol (SSA), in addition to organic bromine (CBry). Both profiles are found to be C-shaped with local maxima in the upper free troposphere (FT). The median tropospheric BrO vertical column density (VCD) was measured as 1.6×1013 molec cm−2, compared to model predictions of 0.9×1013 molec cm−2 in GEOS-Chem (CBry but no SSA source), 0.4×1013 molec cm−2 in CAM-Chem (CBry and SSA), and 2.1×1013 molec cm−2 in GEOS-Chem (CBry and SSA). Neither global model fully captures the C-shape of the Bry profile. A local Bry maximum of 3.6 ppt (2.9–4.4 ppt; 95 % confidence interval, CI) is inferred between 9.5 and 13.5 km in air masses influenced by recent convective outflow. Unlike BrO, which increases from the convective tropical tropopause layer (TTL) to the aged TTL, gas-phase Bry decreases from the convective TTL to the aged TTL. Analysis of gas-phase Bry against multiple tracers (CFC-11, H2O ∕ O3 ratio, and potential temperature) reveals a Bry minimum of 2.7 ppt (2.3–3.1 ppt; 95 % CI) in the aged TTL, which agrees closely with a stratospheric injection of 2.6 ± 0.6 ppt of inorganic Bry (estimated from CFC-11 correlations), and is remarkably insensitive to assumptions about heterogeneous chemistry. Bry increases to 6.3 ppt (5.6–7.0 ppt; 95 % CI) in the stratospheric "middleworld" and 6.9 ppt (6.5–7.3 ppt; 95 % CI) in the stratospheric "overworld". The local Bry minimum in the aged TTL is qualitatively (but not quantitatively) captured by CAM-Chem, and suggests a more complex partitioning of gas-phase and aerosol Bry species than previously recognized. Our data provide corroborating evidence that inorganic bromine sources (e.g., SSA-derived gas-phase Bry) are needed to explain the gas-phase Bry budget in the upper free troposphere and TTL. They are also consistent with observations of significant bromide in Upper Troposphere–Lower Stratosphere aerosols. The total Bry budget in the TTL is currently not closed, because of the lack of concurrent quantitative measurements of gas-phase Bry species (i.e., BrO, HOBr, HBr, etc.) and aerosol bromide. Such simultaneous measurements are needed to (1) quantify SSA-derived Bry in the upper FT, (2) test Bry partitioning, and possibly explain the gas-phase Bry minimum in the aged TTL, (3) constrain heterogeneous reaction rates of bromine, and (4) account for all of the sources of Bry to the lower stratosphere
Ozone depletion due to dust release of iodine in the free troposphere
Iodine is an atmospheric trace element emitted from oceans that efficiently destroys ozone (O3). Low O3 in airborne dust layers is frequently observed but poorly understood. We show that dust is a source of gas-phase iodine, indicated by aircraft observations of iodine monoxide (IO) radicals inside lofted dust layers from the Atacama and Sechura Deserts that are up to a factor of 10 enhanced over background. Gas-phase iodine photochemistry, commensurate with observed IO, is needed to explain the low O3 inside these dust layers (below 15 ppbv; up to 75% depleted). The added dust iodine can explain decreases in O3 of 8% regionally and affects surface air quality. Our data suggest that iodate reduction to form volatile iodine species is a missing process in the geochemical iodine cycle and presents an unrecognized aeolian source of iodine. Atmospheric iodine has tripled since 1950 and affects ozone layer recovery and particle formation.Fil: Koenig, Theodore K.. State University of Colorado at Boulder; Estados Unidos. Cooperative Institute for Research in Environmental Sciences; Estados UnidosFil: Volkamer, Rainer. State University of Colorado at Boulder; Estados Unidos. Cooperative Institute for Research in Environmental Sciences; Estados UnidosFil: Apel, Eric C.. National Center for Atmospheric Research; Estados UnidosFil: Bresch, James F.. National Center for Atmospheric Research; Estados UnidosFil: Cuevas, Carlos A.. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Dix, Barbara. State University of Colorado at Boulder; Estados Unidos. Cooperative Institute for Research in Environmental Sciences; Estados UnidosFil: Eloranta, Edwin W.. University of Wisconsin; Estados UnidosFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: Hall, Samuel R.. National Center for Atmospheric Research; Estados UnidosFil: Hornbrook, Rebecca S.. National Center for Atmospheric Research; Estados UnidosFil: Pierce, R. Bradley. National Environmental Satellite, Data, and Information Service; Estados UnidosFil: Reeves, J. Michael. National Center for Atmospheric Research; Estados UnidosFil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Ullmann, Kirk. National Center for Atmospheric Research; Estados Unido
Recommended from our members
Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem
We present a simulation of the global present-day composition of the troposphere which includes the chemistry of halogens (Cl, Br, I). Building on previous work within the GEOS-Chem model we include emissions of inorganic iodine from the oceans, anthropogenic and biogenic sources of halogenated gases, gas phase chemistry, and a parameterised approach to heterogeneous halogen chemistry. Consistent with Schmidt et al. (2016) we do not include sea-salt debromination. Observations of halogen radicals (BrO, IO) are sparse but the model has some skill in reproducing these. Modelled IO shows both high and low biases when compared to different datasets, but BrO concentrations appear to be modelled low. Comparisons to the very sparse observations dataset of reactive Cl species suggest the model represents a lower limit of the impacts of these species, likely due to underestimates in emissions and therefore burdens. Inclusion of Cl, Br, and I results in a general improvement in simulation of ozone (O3) concentrations, except in polar regions where the model now underestimates O3 concentrations. Halogen chemistry reduces the global tropospheric O3 burden by 18.6%, with the O3 lifetime reducing from 26 to 22 days. Global mean OH concentrations of 1.28 × 106moleculescm-3 are 8.2% lower than in a simulation without halogens, leading to an increase in the CH4 lifetime (10.8%) due to OH oxidation from 7.47 to 8.28 years. Oxidation of CH4 by Cl is small (∼ 2%) but Cl oxidation of other VOCs (ethane, acetone, and propane) can be significant (∼ 15-27%). Oxidation of VOCs by Br is smaller, representing 3.9% of the loss of acetaldehyde and 0.9% of the loss of formaldehyde
Stratospheric Injection of Brominated Very Short‐Lived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models
We quantify the stratospheric injection of brominated very short‐lived substances (VSLS) based on aircraft observations acquired in winter 2014 above the Tropical Western Pacific during the CONvective TRansport of Active Species in the Tropics (CONTRAST) and the Airborne Tropical TRopopause EXperiment (ATTREX) campaigns. The overall contribution of VSLS to stratospheric bromine was determined to be 5.0 ± 2.1 ppt, in agreement with the 5 ± 3 ppt estimate provided in the 2014 World Meteorological Organization (WMO) Ozone Assessment report (WMO 2014), but with lower uncertainty. Measurements of organic bromine compounds, including VSLS, were analyzed using CFC‐11 as a reference stratospheric tracer. From this analysis, 2.9 ± 0.6 ppt of bromine enters the stratosphere via organic source gas injection of VSLS. This value is two times the mean bromine content of VSLS measured at the tropical tropopause, for regions outside of the Tropical Western Pacific, summarized in WMO 2014. A photochemical box model, constrained to CONTRAST observations, was used to estimate inorganic bromine from measurements of BrO collected by two instruments. The analysis indicates that 2.1 ± 2.1 ppt of bromine enters the stratosphere via inorganic product gas injection. We also examine the representation of brominated VSLS within 14 global models that participated in the Chemistry‐Climate Model Initiative. The representation of stratospheric bromine in these models generally lies within the range of our empirical estimate. Models that include explicit representations of VSLS compare better with bromine observations in the lower stratosphere than models that utilize longer‐lived chemicals as a surrogate for VSLS
Recommended from our members
Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS
Abstract. We present a parameterization retrieval of volume mixing ratios (VMR) from differential slant column density (dSCD) measurements by airborne multi-axis differential optical absorption spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analysed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversion of limb dSCDs into VMRs is then realized by calculating box-air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are 1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; 2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCDref) need to be known; and 3) VMRs can be retrieved for every measurement point along a flight track, in contrast to profile inversion techniques. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO2), using 1) simulated dSCD data for different trace gas and aerosol profiles; and 2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMRpara) and the true VMR (VMRtrue) is excellent for all trace gases. Offsets, slopes and R2 values for the linear fit of VMRpara over VMRtrue are as follows: BrO: (0.008 ± 0.001) pptv, 0.988 ± 0.001, 0.987; IO: (−0.0066 ± 0.0001) pptv, 1.0021 ± 0.0003, 0.9979; NO2: (−0.17 ± 0.03) pptv, 1.0036 ± 0.0001, 0.9997. The agreement for atmospheres with aerosol shows comparable R2 values to the Rayleigh case, but slopes deviate a bit more from one: BrO: (0.093 ± 0.002) pptv, 0.933 ± 0.002, 0.907; IO: (0.0021 ± 0.0004) pptv, 0.887 ± 0.001, 0.973; NO2: (8.5 ± 0.1) pptv, 0.8302 ± 0.0006, 0.9923. VMRpara from field data are further compared with optimal estimation retrievals (VMROE). Least orthogonal distance fit of the data give the following equations: BrOpara = (0.1 ± 0.2) pptv + (0.95 ± 0.14) x BrOOE; IOpara = (0.01 ± 0.02) pptv + (1.00 ± 0.12) x IOOE; NO2para = (1.7 ± 8.0) pptv + (0.90 ± 0.51) x NO2OE. Overall, we conclude that the parameterization retrieval is accurate with an uncertainty of 20 % for IO, 30 % for BrO and NO2, but not better than 0.05 pptv IO, 0.5 pptv BrO, and 10 pptv NO2. The retrieval is applicable over a wide range of atmospheric conditions and measurement geometries, and not limited to the interpretation of vertical profile measurements in the remote troposphere.
</jats:p