19 research outputs found

    Fitness costs of key point mutations that underlie acaricide target-site resistance in the two-spotted spider mite Tetranychus urticae

    Get PDF
    The frequency of insecticide/acaricide target-site resistance is increasing in arthropod pest populations and is typically underpinned by single point mutations that affect the binding strength between the insecticide/acaricide and its target-site. Theory predicts that although resistance mutations clearly have advantageous effects under the selection pressure of the insecticide/acaricide, they might convey negative pleiotropic effects on other aspects of fitness. If such fitness costs are in place, target-site resistance is thus likely to disappear in the absence of insecticide/acaricide treatment, a process that would counteract the spread of resistance in agricultural crops. Hence, there is a great need to reliably quantify the various potential pleiotropic effects of target-site resistance point mutations on arthropod fitness. Here, we used near-isogenic lines of the spider mite pest Tetranychus urticae that carry well-characterized acaricide target-site resistance mutations to quantify potential fitness costs. Specifically, we analyzed P262T in the mitochondrial cytochrome b, the combined G314D and G326E substitutions in the glutamate-gated chloride channels, L1024V in the voltage-gated sodium channel, and I1017F in chitin synthase 1. Five fertility life table parameters and nine single-generation life-history traits were quantified and compared across a total of 15 mite lines. In addition, we monitored the temporal resistance level dynamics of populations with different starting frequency levels of the chitin synthase resistant allele to further support our findings. Three target-site resistance mutations, I1017F and the co-occurring G314D and G326E mutations, were shown to significantly and consistently alter certain fitness parameters in T. urticae. The other two mutations (P262T and L1024V) did not result in any consistent change in a fitness parameter analyzed in our study. Our findings are discussed in the context of the global spread of T. urticae pesticide resistance and integrated pest management

    Regulating resistance: CncC:Maf, antioxidant response elements and the overexpression of detoxification genes in insecticide resistance

    Get PDF
    Although genetic and genomic tools have greatly furthered our understanding of resistance-associated mutations in molecular target sites of insecticides, the genomic basis of transcriptional regulation of detoxification loci in insect pests and vectors remains relatively unexplored. Recent work using RNAi, reporter assays and comparative genomics are beginning to reveal the molecular architecture of this response, identifying critical transcription factors and their binding sites. Central to this is the insect ortholog of the mammalian transcription factor Nrf2, Cap ‘n’ Collar isoform-C (CncC) which as a heterodimer with Maf-S regulates the transcription of phase I, II and III detoxification loci in a range of insects, with CncC knockdown or upregulation directly affecting phenotypic resistance. CncC:Maf binds to specific antioxidant response element sequences upstream of detoxification genes to initiate transcription. Recent work is now identifying these binding sites for resistance-associated loci and, coupled with genome sequence data and reporter assays, enabling identification of polymorphisms in the CncC:Maf binding site which regulate the insecticide resistance phenotype. © 2018 Elsevier Inc

    Expanding the Vector Control Toolbox for Malaria Elimination: A Systematic Review of the Evidence.

    Get PDF
    Additional vector control tools (VCTs) are needed to supplement insecticide-treated nets (ITNs) and indoor residual spraying (IRS) to achieve malaria elimination in many settings. To identify options for expanding the malaria vector control toolbox, we conducted a systematic review of the availability and quality of the evidence for 21 malaria VCTs, excluding ITNs and IRS. Six electronic databases and grey literature sources were searched from January 1, 1980 to September 28, 2015 to identify systematic reviews, Phase I-IV studies, and observational studies that measured the effect of malaria VCTs on epidemiological or entomological outcomes across any age groups in all malaria-endemic settings. Eligible studies were summarized qualitatively, with quality and risk of bias assessments undertaken where possible. Of 17,912 studies screened, 155 were eligible for inclusion and were included in a qualitative synthesis. Across the 21 VCTs, we found considerable heterogeneity in the volume and quality of evidence, with 7 VCTs currently supported by at least one Phase III community-level evaluation measuring parasitologically confirmed malaria incidence or infection prevalence (insecticide-treated clothing and blankets, insecticide-treated hammocks, insecticide-treated livestock, larval source management (LSM), mosquito-proofed housing, spatial repellents, and topical repellents). The remaining VCTs were supported by one or more Phase II (n=13) or Phase I evaluation (n=1). Overall the quality of the evidence base remains greatest for LSM and topical repellents, relative to the other VCTs evaluated, although existing evidence indicates that topical repellents are unlikely to provide effective population-level protection against malaria. Despite substantial gaps in the supporting evidence, several VCTs may be promising supplements to ITNs and IRS in appropriate settings. Strengthening operational capacity and research to implement underutilized VCTs, such as LSM and mosquito-proofed housing, using an adaptive, learning-by-doing approach, while expanding the evidence base for promising supplementary VCTs that are locally tailored, should be considered central to global malaria elimination efforts

    Evolutionary implications of recombination differences across diverging populations of Anopheles

    No full text
    Abstract Recombination is one of the main evolutionary mechanisms responsible for changing the genomic architecture of populations; and in essence, it is the main mechanism by which novel combinations of alleles, haplotypes, are formed. A clear picture that has emerged across study systems is that recombination is highly variable, even among closely related species. However, it is only until very recently that we have started to understand how recombination variation between populations of the same species impact genetic diversity and divergence. Here, we used whole-genome sequence data to build fine-scale recombination maps for nine populations within two species of Anopheles , Anopheles gambiae and Anopheles coluzzii . The genome-wide recombination averages were on the same order of magnitude for all populations except one. Yet, we identified significant differences in fine-scale recombination rates among all population comparisons. We report that effective population sizes, and presence of a chromosomal inversion has major contribution to recombination rate variation along the genome and across populations. We identified over 400 highly variable recombination hotspots across all populations, where only 9.6% are shared between two or more populations. Additionally, our results are consistent with recombination hotspots contributing to both genetic diversity and absolute divergence (dxy) between populations and species of Anopheles . However, we also show that recombination has a small impact on population genetic differentiation as estimated with F ST . The minimal impact that recombination has on genetic differentiation across populations represents the first empirical evidence against recent theoretical work suggesting that variation in recombination along the genome can mask or impair our ability to detect signatures of selection. Our findings add new understanding to how recombination rates vary within species, and how this major evolutionary mechanism can maintain and contribute to genetic variation and divergence within a prominent malaria vector

    In Silico Karyotyping of Chromosomally Polymorphic Malaria Mosquitoes in the Anopheles gambiae Complex

    No full text
    Chromosomal inversion polymorphisms play an important role in adaptation to environmental heterogeneities. For mosquito species in the Anopheles gambiae complex that are significant vectors of human malaria, paracentric inversion polymorphisms are abundant and are associated with ecologically and epidemiologically important phenotypes. Improved understanding of these traits relies on determining mosquito karyotype, which currently depends upon laborious cytogenetic methods whose application is limited both by the requirement for specialized expertise and for properly preserved adult females at specific gonotrophic stages. To overcome this limitation, we developed sets of tag single nucleotide polymorphisms (SNPs) inside inversions whose biallelic genotype is strongly correlated with inversion genotype. We leveraged 1,347 fully sequenced An. gambiae and Anopheles coluzzii genomes in the Ag1000G database of natural variation. Beginning with principal components analysis (PCA) of population samples, applied to windows of the genome containing individual chromosomal rearrangements, we classified samples into three inversion genotypes, distinguishing homozygous inverted and homozygous uninverted groups by inclusion of the small subset of specimens in Ag1000G that are associated with cytogenetic metadata. We then assessed the correlation between candidate tag SNP genotypes and PCA-based inversion genotypes in our training sets, selecting those candidates with >80% agreement. Our initial tests both in held-back validation samples from Ag1000G and in data independent of Ag1000G suggest that when used for in silico inversion genotyping of sequenced mosquitoes, these tags perform better than traditional cytogenetics, even for specimens where only a small subset of the tag SNPs can be successfully ascertained
    corecore