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ABSTRACT 13 

While genetic and genomic tools have greatly furthered our understanding of resistance-associated 14 

mutations in molecular target sites of insecticides, the genomic basis of transcriptional regulation of 15 

detoxification loci in insect pests and vectors remains relatively unexplored. Recent work using RNAi, 16 

reporter assays and comparative genomics are beginning to reveal the molecular architecture of this 17 

response, identifying critical transcription factors and their binding sites. Central to this is the insect 18 

ortholog of the mammalian transcription factor Nrf2, Cap ͚Ŷ͛ Collar isoform-C (CncC) which as a 19 

heterodimer with Maf-S regulates the transcription of phase I, II and III detoxification loci in a range 20 

of insects with CncC knockdown or upregulation directly affecting phenotypic resistance. CncC:Maf 21 

binds to specific antioxidant response element sequences upstream of detoxification genes to initiate 22 

transcription. Recent work is now identifying these binding sites for resistance-associated loci and, 23 

coupled with genome sequence data and reporter assays, enabling identification of polymorphisms in 24 

the CncC:Maf binding site which regulate the insecticide resistance phenotype.  25 



Exposure to insecticide instigates a complex response through which insects sequester, detoxify or 26 

excrete toxins before they reach their target or have other adverse consequences. The battery of 27 

detoxification genes and those elements which control their coordinated response has been labelled 28 

͚the defensome͛ [1]. The insect defensome must cope with a variety of assaults from foodstuffs e.g.  29 

haem breakdown products or plant allelochemicals, but has been latterly co-opted to deal with 30 

xenobiotic insecticidal challenge. Whilst the mammalian xenobiotic response has received much 31 

attention, a detailed understanding of the mechanistic basis of detoxifying enzyme upregulation in 32 

the insecticide resistance response of insects has been lacking. Recent work on both model, and non-33 

model insects is beginning to redress this imbalance.  34 

CncC:Maf regulates insecticide resistance and resistance-associated genes 35 

Gene expression is regulated by a complex of transcriptional activators that bind to regions upstream 36 

of transcription start sites recruiting chromatin-modifying factors and the RNA polymerase II 37 

containing transcription initiation apparatus. Core RNA polymerase is capable of DNA dependant RNA 38 

synthesis in vitro but incapable of specific promoter recognition in the absence of additional factors. 39 

In eukaryotes a key transcriptional activator in the response to a wide variety of stressors is encoded 40 

by nuclear factor, erythroid 2-like Nfe2l2 (Nrf2) [2-5], a mammalian bZIP family transcription factor 41 

that binds to specific promoter motifs – termed antioxidant response elements (AREs) - stimulating 42 

transcription. In mammals, Nrf2 is a key regulator of both developmental pathways and the rather 43 

Ŷeďulously titled ͚stress response͛ [2-4]. Under normal conditions, Nrf2 is retained cytoplasmically, 44 

bound to the cytoskeletal ubiquitin ligase Keap1. Upon stress exposure, Nrf2 releases, translocates to 45 

the nucleus, and forms a heterodimer with a small Muscle Aponeurosis Fibromatosis (Maf-S) protein 46 

[6] binding to AREs upstream of a battery of antioxidant genes (Figure 1) including GSTs [7-9], 47 

carboxylesterases [10], cytochromes p450 [11] and ABC transporters [12] and is involved in regulation 48 

of the proteasome, serving to degrade damaged proteins and enzymes following stress-induced 49 

damage [13]. In Drosophila the insect Nrf2 ortholog Cap ͚Ŷ͛ collar isoforŵ C, (CncC), is known to have 50 



a central role in both development and the ͚stress response͛ [5,14]. Xenobiotic exposure, including 51 

insecticidal challenge falls under this banner. If CncC:Maf regulates the expression of insecticide-52 

resistance associated genes then perturbations to CncC levels, or ARE polymorphisms should alter 53 

both phenotypic insecticide resistance and detoxification gene expression. Thus, a regulatory role of 54 

CncC:Maf in the response to insecticides may occur through a variety of mechanisms: upregulation of 55 

CncC/Maf (leading to increased target transcription), down-regulation of Keap1 (increasing nuclear 56 

translocation of CncC:Maf), mutations in key domains of these proteins, or mutations in AREs 57 

upstream of target genes affecting promoter activity. Metabolic insecticide resistance can occur due 58 

to either changes in enzyme activity resulting from coding polymorphisms or due to constitutive 59 

upregulation of detoxification genes. In either case, those transcription factors initiating expression of 60 

detoxification genes must themselves be constitutively expressed. CncC is itself constitutively 61 

activated in DDT-resistant Drosophila strains [15] as is Nrf2 is in mammals [16] although these 62 

transcription factors do have a relatively short half-life (<20 min) [17]. Constitutive CnnC 63 

overexpression is also seen in a number of arthropods e.g. resistant Tribolium [18], Anopheles 64 

stephensi [1] and spider mites [19] suggesting that this may underlie the resistant phenotype in some 65 

instances. Although mutations to CncC, Maf-S or Keap1 may have phenotypic effects, e.g. deletion of 66 

the NHB1 domain can result in induced expression of CncC targets [20] there is, as yet, no evidence 67 

that naturally occurring mutations to these highly conserved TFs underpin resistance. 68 

Initial studies in Drosophila [21] demonstrated that either overexpressing CncC, or introducing a loss 69 

of function Keap1 mutation not only upregulated the detoxifying enzyme gstD1, a gene with an 70 

upstream ARE, but also significantly increased survival to the toxic herbicide paraquat. By contrast, 71 

RNAi knockdown (KD) of CncC decreased both gstD1 expression and survival demonstrating the 72 

importance of CncC:Maf for insect survival in the face of xenobiotic exposure. The first work to study 73 

the role of CncC:Maf in a true resistant phenotype used tissue specific Keap1 KD (releasing CncC for 74 

cytoplasmic transposition) demonstrating a significant increase in resistance to the organophosphate 75 

malathion in Drosophila melanogaster [22]. The same study showed that >70% of genes upregulated 76 



following phenobarbital (a prototypical inducer of the xenobiotic response)  exposure are also 77 

upregulated by ectopic CncC exposure [22] demonstrating the breadth of effect of this TF. Recent 78 

work now shows the universality of the role of CncC:Maf in insecticide resistance with studies on 79 

Drosophila, flour beetles [18], Colorado potato beetles [23], Aphis gosypii [24] and spider mites 80 

(Arachnidae) [19] all showing that perturbing the CncC:Maf balance affects resistance to a variety of 81 

insecticides and alters the expression of key genes previously demonstrated to be involved in this 82 

resistance (Table 1). These studies have used a variety of approaches including CncC/Maf knockdown 83 

through RNAi, targeted GAL4/UAS overexpression of CncC/Maf and loss-of-function mutations in 84 

Keap1.  85 

The decreasing cost of sequencing now enables understanding the whole transcriptomic response of 86 

perturbating CncC:Maf. In Tribolium, RNASeq analysis after CncC KD showed 662 genes had increased 87 

expression and 91 downregulation including a range of phase I, II and III genes [25]. It is unlikely that 88 

all have AREs and are under direct influence of CncC but that disturbing the CncC:Maf balance 89 

instigates a cascade response. Ingham et al. also knocked-down MAF in a multi-insecticide resistant 90 

strain of Anopheles gambiae [26]. KD increased mortality to DDT and pyrethroids (it did not redress 91 

full susceptibility but this strain is nearly fixed for target-site resistance mechanisms) and, through 92 

microarray analysis, the transcriptomic response to MAF KD was determined. Here, genes expressed 93 

differentially were correlated with a mined dataset of differentially expressed genes from multiple IR 94 

studies to identify transcripts upregulated in microarrays and correlated with CncC:Maf-S expression 95 

including the key Anopheline detoxification candidates cyp6m2 and Gstd1. 96 

Antioxidant Response Elements and Insecticide Resistance 97 

Mammalian studies have identified a consensus ARE motif to which CncC:Maf binds: 5’-98 

TMAnnRTGAYnnnGCRwwww-3’ [27]. The experimentally determined Drosophila motif is similar but 99 

whilst demonstrating a consensus exhibits substantial variability (Figure 2). This motif conservation 100 

enables its genome-wide identification computationally through positional matrix screening (see Fig 101 



2) e.g. using Motifdb [28]. However, insects are a diverse and ancient Class (the time from the 102 

Drosophila-Anopheles MRCA is 265MY and Drosophila-Myzus 358MY c.f. 90MY between human and 103 

mouse) [29]. “iŶĐe iŶ ŵaŵŵaliaŶ systeŵs a ͞uŶiǀeƌsally appliĐaďle ĐoŶseŶsus seƋueŶĐe ĐaŶŶot ďe 104 

deƌiǀed͟ [30], the presumption that the Drosophila positional matrix is appropriate for other insects 105 

remains untested. However, differences in Tribolium AREs [18] versus Drosophila (Figure 2) suggest 106 

AREs in other insects require experimental identification. The ideal method of identifying binding sites 107 

for CncC:Maf involves CHiP-Seq as undertaken in Drosophila [31-33]. A constraining factor on the 108 

ability to undertake ChIP-Seq for other insects is the lack of validated CncC or Maf antibodies (although 109 

ModEncode [34] circumvented such difficulties through use of ChIP-seq on transgenic flies expressing 110 

CncC-eGFP fusion proteins with immunoprecipitation performed using an anti-GFP antibody).  111 

Both in vivo and in vitro reporter assays have been used to detect the functionality of AREs. Whilst 112 

such reporter assays clearly show AREs drive expression, in the absence of CncC:Maf overexpression, 113 

it is polymorphisms differentiating resistant from susceptible animals which will be causal of 114 

resistance and of use for resistance management [35]. Sometimes these may be gross polymorphisms. 115 

Inserted transposable elements (TEs) can carry TFBSs e.g. the Bari-Jheh TE brings new AREs upstream 116 

of two juvenile hormone epoxy hydrolase genes mediating survival to malathion and paraquat [36] 117 

and  AREs are found in other Drosophila TEs [36]. SNPs are also a likely source. In humans, ARE 118 

sequence polymorphisms underlie inter-individual gene expression variation [27,37,38] with even 119 

single base changes affecting ARE functionality. Insects have much higher levels of sequence diversity 120 

than humans e.g. in Anopheles π=1.53% for a typical autosome within 1kbp upstream of genes where 121 

AREs would reside and across the genome there is 1 variant base every 2bp [39]. Thus it seems likely 122 

that ARE SNPs may affect expression and that there is a reservoir of SNPs in AREs which may be 123 

selected following insecticide challenge. Experimentally introduced ARE SNPs can be shown to affect 124 

detoxification gene expression e.g. mutagenesis of the ARE upstream of a gstD1-GFP reporter 125 

demonstrated only the WT ARE was inducible by stress (e.g. paraquat or H202) indicating the effect of 126 

polymorphisms on promoter activity [21]. Kalsi and Palli [18] also examined reporter activity of various 127 



CYP6B gene promoters from Tribolium demonstrating that SNPs can significantly affect expression. 128 

For D. melanogaster strains differing in DDT resistance levels a 15bp deletion in a CncC:Maf binding 129 

site exhibiting between-strain polymorphism correlated with DDT susceptibility [40] although when 130 

association studies of DDT resistance levels were conducted on the Drosophila Genetics Reference 131 

Panel, this variant was not associated with DDT resistance [41]. Whilst these studies demonstrate 132 

promoter activity of AREs, what is clearly needed is an understanding of the effect of ARE SNPs on 133 

resistance and expression e.g. using Crispr [42] driven disruption of AREs in defined genetic 134 

backgrounds. 135 

Role of other TFs in resistance 136 

The transcription initiation machinery is complex and a CncC and ARE focus may be short-sighted. Kalsi 137 

and Palli [23] conducted RNAi knockdown studies in Tribolium on members of three superfamilies 138 

bHLH/PAS, bZIP and Nuclear Receptors (Table 1). KD of CncC, Maf or Methoprene tolerant all caused 139 

significant increases in mortality to the pyrethroid deltamethrin but crucially, only CncC and Maf KD 140 

also significantly altered the expression of key detoxification genes of the Cyp6BQ family. Whilst this 141 

appears to indicate the CncC:Maf pathway is more important in this phenotype, other transcription 142 

factors may be involved in other resistance phenotypes e.g. RNAi KD of the Aphis gossypii aryl 143 

hydrocarbon receptor affected the gossypol resistance associated Cyp6AD2 [43], and reduced 144 

deltamethrin resistance in T. castaneum [18], the FOXA TF is implicated in Bti resistance in the 145 

Lepidopterans Helicoverpa and Spodoptera [44], and putative TF binding sites such as members of 146 

HNF family (also KD screened in [23]) have been identified in sequencing studies of resistant Aedes 147 

[45] and TFBSs identified in TEs inserted upstream of detoxification genes in Drosophila [46]. However, 148 

for these studies there has been no follow-up to identify and characterise their binding sites. This may 149 

be complicated since binding sites for other TFs may not be proximal (as are AREs) since upstream of 150 

genes lies both the proximal promoter and various cis-regulatory modules. The methods for 151 

identification and characterisation of TFBSs in CREs have been reviewed [47,48] and application of 152 



these methods will address this knowledge gap. In Drosophila a large body of work is accumulating to 153 

develop a comprehensive map of transcription factors and transcription factor binding sites (TFBSs) 154 

[48-50] empowering computational approaches for TFBS identification e.g. [51]. Such work needs to 155 

extend also into other insects given the economic and societal impacts of insecticide resistance. The 156 

first step in this is knowledge of the TF repertoire and which genes are cis-regulated. Genome 157 

sequencing efforts have enabled annotation of, for example, bHLH transcription factors in lice [52], 158 

Psyliidae [53], Nasonia [54], Nilaparvata [55] and vector mosquitoes [56] and further work to 159 

identification their roles and binding sites is necessary. As genome-wide allelic imbalance studies are 160 

now demonstrably feasible and affordable for insects [57] identification of cis-regulated genes in 161 

resistant insects will aid the honing of the search. 162 

Conclusions and future directions 163 

It is clear that CncC:Maf has an important role in insecticide resistance and that CncC upregulation 164 

and/or polymorphisms in its response elements directly affect regulation of detoxification genes. The 165 

high levels of phenotypic resistance seen in many insects to a range of insecticides cautions that other 166 

transcription factors and enhancers are likely involved. The relative ease of study of CncC and its 167 

proximal ARE should not draw attention away from searching for other TFs and characterising these 168 

in the way that has started to occur for CncC:Maf. Concerted efforts employing comparative genomics, 169 

true GWAS, CHiP-Seq and Crispr to further our understanding of this complex phenotype is needed. 170 



 171 

Figure 1. Under normal conditions CncC is held in the cytoplasm by the ubiquitin ligase Keap1 and 172 

degraded through the proteasome pathway. Under oxidative stress such as insecticidal exposure, 173 

CncC dissociates from Keap1, translocates to the nucleus and forms a heterodimer with Maf-S. The 174 

CncC/Maf heterodimer binds to antioxidant response elements (AREs) upstream of target genes and 175 

initiates transcription, in the example here of a cytochrome P450.  176 



 177 

 178 

CYP6BQ1 ATGCCGCAGTGCCGATG 179 

  CYP6BQ6 ACCGTGCAGTAAGTTTG 180 

  CYP6BQ7 ATCCAGCAGTAGAAGGG 181 

  CYP6BQ8 ACCGTGCAGTAAGTTTG 182 

CYP6BQ9 ACGGTGCAGTTCATGTG 183 

CYP6BQ10 ATACTGCAGTTGCAATT 184 

CYP6BQ10 CTGATGCAGTACTCACG 185 

CYP6BQ12 TGATTGCAGTACGAGAT 186 

CYP6BQ12 ATTATGCAGTTGGAAAA 187 

CYP6BQ12 GAAATGCAGTTTTTATC 188 

CYP6BQ12 ACACGGCAGTGCTTGTT 189 

 190 

Figure 2. Variability in the antioxidant response element sequence. 2A. Sequence logo for CncC:Maf-191 

S ARE binding site in Drosophila melanogaster identified through ChIP-seq experiments. Logo 192 

generated at jaspar.genereg.net (Matrix ID: MA0530.1) [58]. Figure 2B. Alignment of AREs identified 193 

upstream of key cytochrome P450 genes of insecticide resistant Tribolium castaneum [18]. Note that 194 

whereas the sequence logo for Drosophila indicates a high likelihood for a C at position 11, at the 195 

equivalent position in the Tribolium AREs is a T (boxed). Note that Position 1 in Figure 2A = base five 196 

of the mammalian ARE (5’-TMAnnRTGAYnnnGCRwwww-3’)  197 

A. 

B. 



Table 1. RNAi knockdown of transcription factors involved in insecticide resistance in insect and arachnid species. CŶcC = cap ͚Ŷ͛ collar isoforŵ C, Ahr = aryl 

hydrocarbon receptor, Arnt = Aryl Hydrocarbon Receptor Nuclear Translocator, Maf-S = small Muscle Aponeurosis Fibromatosis, Met = Methoprene tolerant, 

HNF4 = Hepatocyte Nuclear Factor 4, HR96 = hormone receptor-like in 96, Spineless = aryl hydrocarbon receptor analog, USP = Ultraspiracle (Retinoid X 

receptor homolog which heterodimerizes with the ecdysone receptor regulating ecdysone response genes). Since CncC must form a functional heterodimer 

with MAF it is unclear whether in this heterodimer CncC or Maf-S are the most appropriate KD target. MAF can homodimerize and it is possible that it engages 

other targets in this form, whilst CncC operates only as part of a heterodimer, however KD of either gene appears to cause phenotypic effects with parallel 

KDs often affecting the expression of the same genes. 

Species Phenotype KD target Effect on phenotypic resistance Effect on gene expression Reference 

Hemiptera      

Aphis gossypii gossypol tolerance CncC Increased gossypol tolerance Cyp6AD2 downregulated (qPCR) [24] 

Aphis gossypii gossypol tolerance Ahr, Arnt Increased gossypol tolerance Cyp6AD2 downregulated (qPCR) [43] 

      

Coleoptera      

Tribolium castaneum Deltamethrin resistance CncC 

Maf-S 

Met 

HNF4 

HR96 

Spineless 

USP 

Increased mortality 

Increased mortality 

Increased mortality 

No significant effect 

No significant effect 

No significant effect 

No significant effect 

CncC KD: Cyp6BQ2, Cyp6BQ4, 

Cyp6BQ6, Cyp6BQ7, Cyp6BQ9, 

Cyp6BQ11, Cyp6BQ12 (qPCR) 

MAF: Cyp6BQ2, Cyp6BQ3, Cyp6BQ4, 

Cyp6BQ5, Cyp6BQ6, Cyp6BQ7, 

Cyp6BQ9, Cyp6BQ10, Cyp6BQ12 

(qPCR) 

[18] 

Tribolium castaneum Deltamethrin resistance CncC Not tested, but see above 662 genes upregulated, 91 

downregulated (RNASeq). CnCC, 

Cyp6BQ2, Cyp6BQ6, Cyp6BQ7, 

Cyp6BQ9 (qPCR) 

[25] 

Leptinotarsa decemlineata Imidacloprid resistance CncC Survival decreased from 54% to 

5% following KD 

Cyp9Z25, Cyp9Z29, Cyp6BJ1v1, 

Cyp6BJa/b 

[23] 

      

Lepidoptera      

Helicoverpa armigera Bti resistance (Cry1AC 

toxin) 

Fox-A Lower Bti mortality and higher 

pupation following KD 

ABCC2, ABCC3 (qPCR) [44] 



      

Diptera      

Anopheles gambiae Permethrin, deltamethrin, 

DDT resistance 

Maf-S Increased mortality to DDT, 

permethrin, deltamethrin. No 

effect on bendiocarb mortality. 

Decreased mortality to malathion 

Reduced expression of Cyp6M2, 

GstD1, GstD3 Jheh1, Jheh2, Gnmt. 

Increased expression of Cyp4H17 

[26] 

Culex quinquefasciatus Permethrin resistance GSαS 

Adenylyl 

cyclase 

Increased permethrin 

susceptibility 

GSαS KD: Cyp9M10, Cyp6AA7, 

Cyp9J34 (qPCR) 

AC KD: Cyp9M10, Cyp9J34, Cyp9J40, 

Cyp6AA7 (qPCR) 

[59] 

Drosophila melanogaster Paraquat survival CncC 

Keap1 

Decreased paraquat survival gstD1 expression reduced 

gstD1 expression increased 

[21] 

Drosophila melanogaster  CncC 

 

Keap1 

 

 

Increased malathion resistance 

Reduced expression of Cyp6a2, 

Cyp6a8, gstD2, gstD7, Jheh1 (qPCR) 

[22] 

Drosophila melanogaster DDT resistance CncC 

 

 Reduced expression of Cyp6a2, 

Cyp6a8 (qPCR) 

[15] 

      

Acari      

Tetranychus cinnabarinus Fenpropathrin resistance CncC 

Maf-S 

LC30 increased from 12.75% to 

19.5% 

CncC KD: decreased expression of 

Cyp389B1, Cyp391A1, Cyp392A28. 

MAF KD: Cyp389B1, Cyp392A28. 

[19] 
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*15. Insecticide resistance mediated through elevated expression of detoxification genes is a 

constitutive rather than an induced phenomenon. Misra et al. show that CncC is constitutively 

expressed in resistant strains of Drosophila and that this constitutively expressed gene causes 

upregulation of key detoxification genes. 

**18. Kalsi and Palli knocked-down a variety of transcription factors and demonstrated that it is 

CncC/MAF that controls upregulation of the CYP6BQ genes, previously implicated in pyrethroid 

resistance in flour beetles but also that ARE elements in the CYP6BQ promoter promote expression in 

reporter assays co-transfected with CncC and Maf. 

*21. An older but comprehensive study of the role of CncC in Drosophila. A molecular biology tour de 

force employing a variety of methods to show how CncC is involved in detoxification and aging. 

*25. Following injection of dsRNA (CncC or GFP) RNASeq was used by Kalsi and Palli to understand the 

role of CncC in the transcriptomic response in insecticide resistant Tribolium. This is the only study to 

use RNASeq to study the role of CncC/Maf. 

**26. Ingham et al. use RNAi knockdown of Maf-S in the Tiassalé strain of Anopheles gambiae followed 

by whole-genome microarrays to identify genes regulated by CnCC/Maf. They then compare the 

differentially regulated genes to those genes identified as differentially expressed across a number of 

transcriptomic studies of the insecticide resistance phenotype in mosquitoes. 

*37. Although not a study of the insects or insecticide resistance, Kuosmanen et al. utilised a variety 

of approaches (molecular modelling, analysis of CHiP datasets and protein binding microarrays) to 

show how sequence variation in AREs can affect NRF2 binding and be associated with disease 



resistance. Such work is now needed for the insecticide resistance phenotype in insect genomic 

databases. 

**47. This excellent and comprehensive review covers experimental and computational approaches 

for identifying regulatory motifs in genomes. It focuses on more distal cis-regulatory elements which 

are likely to be more problematical to identify than proximal AREs. Application of these methods to 

insect species beyond Drosophila may identify other TFs (other than CncC) and their binding sites 

involved in the insecticide resistance phenotype. 


