15 research outputs found

    Early acute microvascular kidney transplant rejection in the absence of anti-HLA antibodies is associated with preformed IgG antibodies against diverse glomerular endothelial cell antigens

    Get PDF
    International audienceBACKGROUND: Although anti-HLA antibodies (Abs) cause most antibody-mediated rejections of renal allografts, non-anti-HLA Abs have also been postulated to contribute. A better understanding of such Abs in rejection is needed.METHODS: We conducted a nationwide study to identify kidney transplant recipients without anti-HLA donor-specific Abs who experienced acute graft dysfunction within 3 months after transplantation and showed evidence of microvascular injury, called acute microvascular rejection (AMVR). We developed a crossmatch assay to assess serum reactivity to human microvascular endothelial cells, and used a combination of transcriptomic and proteomic approaches to identify non-HLA Abs.RESULTS: We identified a highly selected cohort of 38 patients with early acute AMVR. Biopsy specimens revealed intense microvascular inflammation and the presence of vasculitis (in 60.5%), interstitial hemorrhages (31.6%), or thrombotic microangiopathy (15.8%). Serum samples collected at the time of transplant showed that previously proposed anti-endothelial cell Abs-angiotensin type 1 receptor (AT1R), endothelin-1 type A and natural polyreactive Abs-did not increase significantly among patients with AMVR compared with a control group of stable kidney transplant recipients. However, 26% of the tested AMVR samples were positive for AT1R Abs when a threshold of 10 IU/ml was used. The crossmatch assay identified a common IgG response that was specifically directed against constitutively expressed antigens of microvascular glomerular cells in patients with AMVR. Transcriptomic and proteomic analyses identified new targets of non-HLA Abs, with little redundancy among individuals.CONCLUSIONS: Our findings indicate that preformed IgG Abs targeting non-HLA antigens expressed on glomerular endothelial cells are associated with early AMVR, and that cell-based assays are needed to improve risk assessments before transplant

    Non-Complement-Binding De Novo Donor-Specific Anti-HLA Antibodies and Kidney Allograft Survival

    No full text
    International audienceC1q-binding ability may indicate the clinical relevance of de novo donor-specific anti-HLA antibodies (DSA). This study investigated the incidence and risk factors for the appearance of C1q-binding de novo DSA and their long-term impact. Using Luminex Single Antigen Flow Bead assays, 346 pretransplant nonsensitized kidney recipients were screened at 2 and 5 years after transplantation for de novo DSA, which was followed when positive by a C1q Luminex assay. At 2 and 5 years, 12 (3.5%) and eight (2.5%) patients, respectively, had C1q-binding de novo DSA. De novo DSA mean fluorescence intensity \textgreater6237 and \textgreater10,000 at 2 and 5 years, respectively, predicted C1q binding. HLA mismatches and cyclosporine A were independently associated with increased risk of C1q-binding de novo DSA. When de novo DSA were analyzed at 2 years, the 5-year death-censored graft survival was similar between patients with C1q-nonbinding de novo DSA and those without de novo DSA, but was lower for patients with C1q-binding de novo DSA (P=0.003). When de novo DSA were analyzed at 2 and 5 years, the 10-year death-censored graft survival was lower for patients with C1q-nonbinding de novo DSA detected at both 2 and 5 years (P\textless0.001) and for patients with C1q-binding de novo DSA (P=0.002) than for patients without de novo DSA. These results were partially confirmed in two validation cohorts. In conclusion, C1q-binding de novo DSA are associated with graft loss occurring quickly after their appearance. However, the long-term persistence of C1q-nonbinding de novo DSA could lead to lower graft survival

    Detection of C3d-binding donor-specific anti-HLA antibodies at diagnosis of humoral rejection predicts renal graft loss

    No full text
    International audienceAntibody-mediated rejection (AMR) is a major cause of kidney graft loss, yet assessment of individual risk at diagnosis is impeded by the lack of a reliable prognosis assay. Here, we tested whether the capacity of anti-HLA antibodies to bind complement components allows accurate risk stratification at the time of AMR diagnosis. Among 938 kidney transplant recipients for whom a graft biopsy was performed between 2004 and 2012 at the Lyon University Hospitals, 69 fulfilled the diagnosis criteria for AMR and were enrolled. Sera banked at the time of the biopsy were screened for the presence of donor-specific anti-HLA antibodies (DSAs) and their ability to bind C1q and C3d using flow bead assays. In contrast with C4d graft deposition, the presence of C3d-binding DSA was associated with a higher risk of graft loss (P\textless0.001). Despite similar trend, the difference did not reach significance with a C1q-binding assay (P=0.06). The prognostic value of a C3d-binding assay was further confirmed in an independent cohort of 39 patients with AMR (P=0.04). Patients with C3d-binding antibodies had worse eGFR and higher DSA mean fluorescence intensity. In a multivariate analysis, only eGFR \textless30 ml/min per 1.73 m(2) (hazard ratio [HR], 3.56; 95% confidence interval [CI], 1.46 to 8.70; P=0.005) and the presence of circulating C3d-binding DSA (HR, 2.80; 95% CI, 1.12 to 6.95; P=0.03) were independent predictors for allograft loss at AMR diagnosis. We conclude that assessment of the C3d-binding capacity of DSA at the time of AMR diagnosis allows for identification of patients at risk for allograft loss

    Prospective Measures of Adherence by Questionnaire, Low Immunosuppression and Graft Outcome in Kidney Transplantation

    Get PDF
    International audienceBackground: Non-adherence with immunosuppressant medication (MNA) fosters development of de novo donor-specific antibodies (dnDSA), rejection, and graft failure (GF) in kidney transplant recipients (KTRs). However, there is no simple tool to assess MNA, prospectively. The goal was to monitor MNA and analyze its predictive value for dnDSA generation, acute rejection and GF. Methods: We enrolled 301 KTRs in a multicentric French study. MNA was assessed prospectively at 3, 6, 12, and 24 months (M) post-KT, using the Morisky scale. We investigated the association between MNA and occurrence of dnDSA at year 2 post transplantation, using logistic regression models and the association between MNA and rejection or graft failure, using Cox multivariable models. Results: The initial percentage of MNA patients was 17.7%, increasing to 34.6% at 24 months. Nineteen patients (8.4%) developed dnDSA 2 to 3 years after KT. After adjustment for recipient age, HLA sensitization, HLA mismatches, and maintenance treatment, MNA was associated neither with dnDSA occurrence, nor acute rejection. Only cyclosporine use and calcineurin inhibitor (CNI) withdrawal were strongly associated with dnDSA and rejection. With a median follow-up of 8.9 years, GF occurred in 87 patients (29.0%). After adjustment for recipient and donor age, CNI trough level, dnDSA, and rejection, MNA was not associated with GF. The only parameters associated with GF were dnDSA occurrence, and acute rejection. Conclusions: Prospective serial monitoring of MNA using the Morisky scale does not predict dnDSA occurrence, rejection or GF in KTRs. In contrast, cyclosporine and CNI withdrawal induce dnDSA and rejection, which lead to GF

    Missing self triggers NK cell-mediated chronic vascular rejection of solid organ transplants

    Get PDF
    International audienceCurrent doctrine is that microvascular inflammation (MVI) triggered by a transplant -recipient antibody response against alloantigens (antibody-mediated rejection) is the main cause of graft failure. Here, we show that histological lesions are not mediated by antibodies in approximately half the participants in a cohort of 129 renal recipients with MVI on graft biopsy. Genetic analysis of these patients shows a higher prevalence of mismatches between donor HLA I and recipient inhibitory killer cell immunoglobulin-like receptors (KIRs). Human in vitro models and transplantation of β2-microglobulin-deficient hearts into wild-type mice demonstrates that the inability of graft endothelial cells to provide HLA I-mediated inhibitory signals to recipient circulating NK cells triggers their activation, which in turn promotes endothelial damage. Missing self-induced NK cell activation is mTORC1-dependent and the mTOR inhibitor rapamycin can prevent the development of this type of chronic vascular rejection

    Missing self triggers NK cell-mediated chronic vascular rejection of solid organ transplants

    No full text
    Current doctrine is that microvascular inflammation (MVI) triggered by a transplant -recipient antibody response against alloantigens (antibody-mediated rejection) is the main cause of graft failure. Here, we show that histological lesions are not mediated by antibodies in approximately half the participants in a cohort of 129 renal recipients with MVI on graft biopsy. Genetic analysis of these patients shows a higher prevalence of mismatches between donor HLA I and recipient inhibitory killer cell immunoglobulin-like receptors (KIRs). Human in vitro models and transplantation of β2-microglobulin-deficient hearts into wild-type mice demonstrates that the inability of graft endothelial cells to provide HLA I-mediated inhibitory signals to recipient circulating NK cells triggers their activation, which in turn promotes endothelial damage. Missing self-induced NK cell activation is mTORC1-dependent and the mTOR inhibitor rapamycin can prevent the development of this type of chronic vascular rejection.status: publishe

    Inverted direct allorecognition triggers early donor-specific antibody responses after transplantation

    No full text
    International audienceThe generation of antibodies against donor-specific major histocompatibility complex (MHC) antigens, a type of donor-specific antibodies (DSAs), after transplantation requires that recipient’s allospecific B cells receive help from T cells. The current dogma holds that this help is exclusively provided by the recipient’s CD4 + T cells that recognize complexes of recipient’s MHC II molecules and peptides derived from donor-specific MHC alloantigens, a process called indirect allorecognition. Here, we demonstrated that, after allogeneic heart transplantation, CD3ε knockout recipient mice lacking T cells generate a rapid, transient wave of switched alloantibodies, predominantly directed against MHC I molecules. This is due to the presence of donor CD4 + T cells within the graft that recognize intact recipient’s MHC II molecules expressed by B cell receptor–activated allospecific B cells. Indirect evidence suggests that this inverted direct pathway is also operant in patients after transplantation. Resident memory donor CD4 + T cells were observed in perfusion liquids of human renal and lung grafts and acquired B cell helper functions upon in vitro stimulation. Furthermore, T follicular helper cells, specialized in helping B cells, were abundant in mucosa-associated lymphoid tissue of lung and intestinal grafts. In the latter, more graft-derived passenger T cells correlated with the detection of donor T cells in recipient’s circulation; this, in turn, was associated with an early transient anti–MHC I DSA response and worse transplantation outcomes. We conclude that this inverted direct allorecognition is a possible explanation for the early transient anti-MHC DSA responses frequently observed after lung or intestinal transplantations

    Absence of Mortality Differences Between the First and Second COVID-19 Waves in Kidney Transplant Recipients

    Get PDF
    International audienceSARS-CoV-2 pandemic evolved in two consecutive waves over 2020. Improvements in the management of COVID-19 led to a reduction of mortality rates in hospitalized patients during the second wave. Whether this progress also benefited to kidney transplant recipients (KTR), a population particularly vulnerable to severe COVID-19, remained unclear. In France, 957 KTR were hospitalized for COVID-19 in 2020 and their data were prospectively collected in the French SOT COVID registry. The presentation, management, and outcomes of the 359 KTR diagnosed during the 1st wave were compared to those of the 598 of the 2nd wave. Baseline comorbidities were similar between KTR of the 2 waves. Maintenance immunosuppression was reduced in most patients but withdrawal of antimetabolite (73.7% vs 58.4%, p<0.001) or CNI (32.1% vs 16.6%, p<0.001) was less frequent during the 2nd wave. Hydroxychloroquine and azithromycin that were commonly used during the 1st wave (21.7% and 30.9%, respectively) were almost abandoned during the 2nd. In contrast, the use of high dose corticosteroids doubled (19.5% vs. 41.6%, p<0.001). Despite these changing trends in COVID-19 management, 60-day mortality was not statistically different between the 2 waves (25.3% vs. 23.9%; Log Rank, p=0.48) and COVID-19 hospitalization period was not associated with death due to COVID in multivariate analysis (HR 0.89, 95% CI 0.67 - 1.17, p = 0.4). We conclude that changing of therapeutic trends during 2020 did not reduce COVID-19 related mortality in KTR. Our data indirectly support the importance of vaccination and monoclonal neutralizing anti-SARS-CoV-2 antibodies to protect KTR from severe COVID-19
    corecore