3,054 research outputs found

    Nucleosynthesis in neutrino heated matter: The vp-process and the r-process

    Get PDF
    This manuscript reviews recent progress in our understanding of the nucleosynthesis of medium and heavy elements in supernovae. Recent hydrodynamical models of core-collapse supernovae show that a large amount of proton rich matter is ejected under strong neutrino fluxes. This matter constitutes the site of the vp-process where antineutrino absorption reactions catalyze the nucleosynthesis of nuclei with A > 64. Supernovae are also associated with the r-process responsible for the synthesis of the heaviest elements in nature. Fission during the r-process can play a major role in determining the final abundance patter and in explaining the almost universal features seen in metal-poor r-process-rich stars.Comment: 10 pages, 3 figures, invited talk at NIC-IX, International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX, CERN, Geneva, Switzerland, 25-30 June, 200

    Scanning-probe spectroscopy of semiconductor donor molecules

    Full text link
    Semiconductor devices continue to press into the nanoscale regime, and new applications have emerged for which the quantum properties of dopant atoms act as the functional part of the device, underscoring the necessity to probe the quantum structure of small numbers of dopant atoms in semiconductors[1-3]. Although dopant properties are well-understood with respect to bulk semiconductors, new questions arise in nanosystems. For example, the quantum energy levels of dopants will be affected by the proximity of nanometer-scale electrodes. Moreover, because shallow donors and acceptors are analogous to hydrogen atoms, experiments on small numbers of dopants have the potential to be a testing ground for fundamental questions of atomic and molecular physics, such as the maximum negative ionization of a molecule with a given number of positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants has been observed in transport studies[6,7]. In addition, Geim and coworkers identified resonances due to two closely spaced donors, effectively forming donor molecules[8]. Here we present capacitance spectroscopy measurements of silicon donors in a gallium-arsenide heterostructure using a scanning probe technique[9,10]. In contrast to the work of Geim et al., our data show discernible peaks attributed to successive electrons entering the molecules. Hence this work represents the first addition spectrum measurement of dopant molecules. More generally, to the best of our knowledge, this study is the first example of single-electron capacitance spectroscopy performed directly with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages, 3 figures, 5 supplementary figure

    Prototype scintillator cell for an In-based solar neutrino detector

    Full text link
    We describe the work carried out at MPIK to design, model, build and characterize a prototype cell filled with a novel indium-loaded scintillator of interest for real-time low energy solar neutrino spectroscopy. First, light propagation in optical modules was studied with experiments and Monte Carlo simulations. Subsequently a 5 cm x 5 cm x 100 cm prototype detector was set up and the optical performances of several samples were measured. We first tested a benchmark PXE-based scintillator, which performed an attenuation length of ~ 4.2 m and a photo-electron yield of ~ 730 pe/MeV. Then we measured three In-loaded samples. At an In-loading of 44 g/l, an energy resolution of ~ 11.6 % and a spatial resolution of ~ 7 cm were attained for 477 keV recoil electrons. The long-range attenuation length in the cell was ~1.3 m and the estimated photo-electron yield ~ 200 pe/MeV. Light attenuation and relative light output of all tested samples could be reproduced reasonably well by MC. All optical properties of this system have remained stable over a period of > 1 y.Comment: 57 pages, 19 figures, 10 tables elsevier template for manuscript submission submitted to NIMA 10 February 200

    Recent results from Pb-Au collisions at 158 GeV/c per nucleon obtained with the CERES spectrometer

    Full text link
    During the 1996 lead run time, CERES has accumulated 42 million events, corresponding to a factor of 5 more statistics than in 1995 and 2.5 million events of a special photon-run. We report on the results of the low-mass e+^+e^--pair analysis. Since the most critical item is the poor signal-to-background ratio we also discuss the understanding of this background, in absolute terms, with the help of a detailed Monte Carlo simulation. We show preliminary results of the photon analysis and summarize the results of the hadron analysis preliminarily reported on already at QM'97Comment: 10 pages, 9 figures, Proceedings of the XIV Int. Conf. on Nucleus-Nucleus Collisions,Quark Matter 99, Torino, Italy, May 10 - 15, 199

    Photonuclear Reactions of Three-Nucleon Systems

    Get PDF
    We discuss the available data for the differential and the total cross section for the photodisintegration of 3^3He and 3^3H and the corresponding inverse reactions below Eγ=100E_\gamma = 100 MeV by comparing with our calculations using realistic NNNN interactions. The theoretical results agree within the errorbars with the data for the total cross sections. Excellent agreement is achieved for the angular distribution in case of 3^3He, whereas for 3^3H a discrepancy between theory and experiment is found.Comment: 11 pages (twocolumn), 12 postscript figures included, uses psfig, RevTe

    Spatial heterogeneity of habitat suitability for Rift Valley fever occurrence in Tanzania: an ecological niche modelling approach

    Get PDF
    Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined
    corecore