62 research outputs found

    Simulation and Experimental Validation of a Misaligned Rotor in Journal Bearings using Different Levels of Detail

    Get PDF
    In this contribution, a given test rig of a rotor system with journal bearing is validated by using simulation models with different levels of detail. A special focus is placed on the misalignment between rotor and bearing axis. It is shown, how to consider misalignment in the numeric calculation of the bearing forces as well as in the modeling of the rotor system. With a model of the LAVAL rotor, the misalignment in the test rig is identified by measuring and simulating relative equilibrium positions of the rotor in the bearing at different rotational speeds. A measured rotor orbit due to unbalance is used to compare simulation results of different complex rotor models and discuss their accuracy and efficiency

    Prediction of Instability in Rotor-Seal Systems using Forward Whirl Magnetic Bearing Excitation

    Get PDF
    To separate different fluids and pressure levels in high-speed turbomachinery or pumps, mostly contactless seals are used. The leakage flow inside the seal gap applies forces to the vibrating rotor system in deflectional and tangential directions, that are dependent on the rotational speed. Above a speed limit, mainly tangential seal forces can lead to self-excited vibrations and, ultimately, rotor instability. This is similar to the “oil whip” phenomenon in journal bearings. To predict the speed limit, two methods are shown and compared: Simulations based on the bulk flow assumptions and an experimental method. To demonstrate the application, a test rig is used. The experimental method uses measured transfer functions, utilizing an active magnetic bearing for forward whirl excitation in the safe operational range. The speed limit can be predicted by analyzing and extrapolating the vibrational behavior of the rotor-seal system

    d=2, N=2 Superconformal Symmetries and Models

    Get PDF
    We discuss the following aspects of two-dimensional N=2 supersymmetric theories defined on compact super Riemann surfaces: parametrization of (2,0) and (2,2) superconformal structures in terms of Beltrami coefficients and formulation of superconformal models on such surfaces (invariant actions, anomalies and compensating actions, Ward identities).Comment: 43 pages, late

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Introduction.

    No full text
    corecore