98 research outputs found
First detection of a VHE gamma-ray spectral maximum from a Cosmic source: H.E.S.S. discovery of the Vela X nebula
The Vela supernova remnant (SNR) is a complex region containing a number of
sources of non-thermal radiation. The inner section of this SNR, within 2
degrees of the pulsar PSR B0833-45, has been observed by the H.E.S.S. gamma-ray
atmospheric Cherenkov detector in 2004 and 2005. A strong signal is seen from
an extended region to the south of the pulsar, within an integration region of
radius 0.8 deg. around the position (RA = 08h 35m 00s, dec = -45 deg. 36'
J2000.0). The excess coincides with a region of hard X-ray emission seen by the
ROSAT and ASCA satellites. The observed energy spectrum of the source between
550 GeV and 65 TeV is well fit by a power law function with photon index = 1.45
+/- 0.09(stat) +/- 0.2(sys) and an exponential cutoff at an energy of 13.8 +/-
2.3(stat) +/- 4.1(sys) TeV. The integral flux above 1 TeV is (1.28 +/- 0.17
(stat) +/- 0.38(sys)) x 10^{-11} cm^{-2} s^{-1}. This result is the first clear
measurement of a peak in the spectral energy distribution from a VHE gamma-ray
source, likely related to inverse Compton emission. A fit of an Inverse Compton
model to the H.E.S.S. spectral energy distribution gives a total energy in
non-thermal electrons of ~2 x 10^{45} erg between 5 TeV and 100 TeV, assuming a
distance of 290 parsec to the pulsar. The best fit electron power law index is
2.0, with a spectral break at 67 TeV.Comment: 5 pages, 4 figures, accepted for publication in Astronomy and
Astrophysics letter
A possible association of the new VHE gamma-ray source HESS J1825--137 with the pulsar wind nebula G18.0--0.7
We report on a possible association of the recently discovered very
high-energy -ray source HESS J1825--137 with the pulsar wind nebula
(commonly referred to as G 18.0--0.7) of the year old
Vela-like pulsar PSR B1823--13. HESS J1825--137 was detected with a
significance of 8.1 in the Galactic Plane survey conducted with the
H.E.S.S. instrument in 2004. The centroid position of HESS J1825--137 is offset
by 11\arcmin south of the pulsar position. \emph{XMM-Newton} observations have
revealed X-ray synchrotron emission of an asymmetric pulsar wind nebula
extending to the south of the pulsar. We argue that the observed morphology and
TeV spectral index suggest that HESS J1825--137 and G 18.0--0.7 may be
associated: the lifetime of TeV emitting electrons is expected to be longer
compared to the {\it XMM-Newton} X-ray emitting electrons, resulting in
electrons from earlier epochs (when the spin-down power was larger)
contributing to the present TeV flux. These electrons are expected to be
synchrotron cooled, which explains the observed photon index of , and
the longer lifetime of TeV emitting electrons naturally explains why the TeV
nebula is larger than the X-ray size. Finally, supernova remnant expansion into
an inhomogeneous medium is expected to create reverse shocks interacting at
different times with the pulsar wind nebula, resulting in the offset X-ray and
TeV -ray morphology.Comment: 5 pages, 3 figures, to appear in Astronomy and Astrophysics Letter
Observations of Mkn 421 in 2004 with H.E.S.S. at large zenith angles
Mkn 421 was observed during a high flux state for nine nights in April and
May 2004 with the fully operational High Energy Stereoscopic System (H.E.S.S.)
in Namibia. The observations were carried out at zenith angles of
60--65, which result in an average energy threshold of 1.5 TeV
and a collection area reaching 2~km at 10~TeV. Roughly 7000 photons from
Mkn~421 were accumulated with an average gamma-ray rate of 8 photons/min. The
overall significance of the detection exceeds 100 standard deviations. The
light-curve of integrated fluxes above 2~TeV shows changes of the diurnal flux
up to a factor of 4.3. For nights of high flux, intra-night variability is
detected with a decay time of less than 1 hour. The time averaged energy
spectrum is curved and is well described by a power-law with a photon index
\egamm and an exponential cutoff at \ecut~TeV and an average integral flux
above 2~TeV of 3 Crab flux units. Significant variations of the spectral shape
are detected with a spectral hardening as the flux increases. Contemporaneous
multi-wavelength observations at lower energies (X-rays and gamma-rays above
~GeV) indicate smaller relative variability amplitudes than seen
above 2~TeV during high flux state observed in April 2004.Comment: 5 pages, 4 figures, published in A&
Very high energy gamma rays from the direction of Sagittarius A*.
We report the detection of a point-like source of very high energy (VHE) -rays coincident within 1' of Sgr A *, obtained with the HESS array of Cherenkov telescopes. The -rays exhibit a power-law energy spectrum with a spectral index of and a flux above the 165 GeV threshold of m -2 s -1. The measured flux and spectrum differ substantially from recent results reported in particular by the CANGAROO collaboration
Discovery of the Binary Pulsar PSR B1259-63 in Very-High-Energy Gamma Rays around Periastron with H.E.S.S
We report the discovery of very-high-energy (VHE) gamma-ray emission of the
binary system PSR B1259-63/SS 2883 of a radio pulsar orbiting a massive,
luminous Be star in a highly eccentric orbit. The observations around the 2004
periastron passage of the pulsar were performed with the four 13 m Cherenkov
telescopes of the H.E.S.S. experiment, recently installed in Namibia and in
full operation since December 2003. Between February and June 2004, a gamma-ray
signal from the binary system was detected with a total significance above 13
sigma. The flux was found to vary significantly on timescales of days which
makes PSR B1259-63 the first variable galactic source of VHE gamma-rays
observed so far. Strong emission signals were observed in pre- and
post-periastron phases with a flux minimum around periastron, followed by a
gradual flux decrease in the months after. The measured time-averaged energy
spectrum above a mean threshold energy of 380 GeV can be fitted by a simple
power law F_0(E/1 TeV)^-Gamma with a photon index Gamma =
2.7+-0.2_stat+-0.2_sys and flux normalisation F_0 = (1.3+-0.1_stat+-0.3_sys)
10^-12 TeV^-1 cm^-2 s^-1. This detection of VHE gamma-rays provides unambiguous
evidence for particle acceleration to multi-TeV energies in the binary system.
In combination with coeval observations of the X-ray synchrotron emission by
the RXTE and INTEGRAL instruments, and assuming the VHE gamma-ray emission to
be produced by the inverse Compton mechanism, the magnetic field strength can
be directly estimated to be of the order of 1 G.Comment: 10 pages, 8 figures, accepted in Astronomy and Astrophysics on 2 June
2005, replace: document unchanged, replaced author field in astro-ph entry -
authors are all members of the H.E.S.S. collaboration and three additional
authors (99+3, see document
The Nature of Working Memory for Braille
Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV). In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM) of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal) of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents
Speech and Non-Speech Audio-Visual Illusions: A Developmental Study
It is well known that simultaneous presentation of incongruent audio and visual stimuli can lead to illusory percepts. Recent data suggest that distinct processes underlie non-specific intersensory speech as opposed to non-speech perception. However, the development of both speech and non-speech intersensory perception across childhood and adolescence remains poorly defined. Thirty-eight observers aged 5 to 19 were tested on the McGurk effect (an audio-visual illusion involving speech), the Illusory Flash effect and the Fusion effect (two audio-visual illusions not involving speech) to investigate the development of audio-visual interactions and contrast speech vs. non-speech developmental patterns. Whereas the strength of audio-visual speech illusions varied as a direct function of maturational level, performance on non-speech illusory tasks appeared to be homogeneous across all ages. These data support the existence of independent maturational processes underlying speech and non-speech audio-visual illusory effects
Occlusion of LTP-Like Plasticity in Human Primary Motor Cortex by Action Observation
Passive observation of motor actions induces cortical activity in the primary motor cortex (M1) of the onlooker, which could potentially contribute to motor learning. While recent studies report modulation of motor performance following action observation, the neurophysiological mechanism supporting these behavioral changes remains to be specifically defined. Here, we assessed whether the observation of a repetitive thumb movement – similarly to active motor practice – would inhibit subsequent long-term potentiation-like (LTP) plasticity induced by paired-associative stimulation (PAS). Before undergoing PAS, participants were asked to either 1) perform abductions of the right thumb as fast as possible; 2) passively observe someone else perform thumb abductions; or 3) passively observe a moving dot mimicking thumb movements. Motor evoked potentials (MEP) were used to assess cortical excitability before and after motor practice (or observation) and at two time points following PAS. Results show that, similarly to participants in the motor practice group, individuals observing repeated motor actions showed marked inhibition of PAS-induced LTP, while the “moving dot” group displayed the expected increase in MEP amplitude, despite differences in baseline excitability. Interestingly, LTP occlusion in the action-observation group was present even if no increase in cortical excitability or movement speed was observed following observation. These results suggest that mere observation of repeated hand actions is sufficient to induce LTP, despite the absence of motor learning
Intention Understanding in Autism
When we observe a motor act (e.g. grasping a cup) done by another individual, we extract, according to how the motor act is performed and its context, two types of information: the goal (grasping) and the intention underlying it (e.g. grasping for drinking). Here we examined whether children with autistic spectrum disorder (ASD) are able to understand these two aspects of motor acts. Two experiments were carried out. In the first, one group of high-functioning children with ASD and one of typically developing (TD) children were presented with pictures showing hand-object interactions and asked what the individual was doing and why. In half of the “why” trials the observed grip was congruent with the function of the object (“why-use” trials), in the other half it corresponded to the grip typically used to move that object (“why-place” trials). The results showed that children with ASD have no difficulties in reporting the goals of individual motor acts. In contrast they made several errors in the why task with all errors occurring in the “why-place” trials. In the second experiment the same two groups of children saw pictures showing a hand-grip congruent with the object use, but within a context suggesting either the use of the object or its placement into a container. Here children with ASD performed as TD children, correctly indicating the agent's intention. In conclusion, our data show that understanding others' intentions can occur in two ways: by relying on motor information derived from the hand-object interaction, and by using functional information derived from the object's standard use. Children with ASD have no deficit in the second type of understanding, while they have difficulties in understanding others' intentions when they have to rely exclusively on motor cues
Low Fidelity Imitation of Atypical Biological Kinematics in Autism Spectrum Disorders Is Modulated by Self-Generated Selective Attention.
We examined whether adults with autism had difficulty imitating atypical biological kinematics. To reduce the impact that higher-order processes have on imitation we used a non-human agent model to control social attention, and removed end-state target goals in half of the trials to minimise goal-directed attention. Findings showed that only neurotypical adults imitated atypical biological kinematics. Adults with autism did, however, become significantly more accurate at imitating movement time. This confirmed they engaged in the task, and that sensorimotor adaptation was self-regulated. The attentional bias to movement time suggests the attenuation in imitating kinematics might be a compensatory strategy due to deficits in lower-level visuomotor processes associated with self-other mapping, or selective attention modulated the processes that represent biological kinematics
- …