63 research outputs found

    Scaling-up Conservation Agriculture Production System (CAPS) with Drip Irrigation by Integrating MCE Technique and the APEX Model

    Get PDF
    The conservation agriculture production system (CAPS) approach with drip irrigation has proven to have the potential to improve water management and food production in Ethiopia. A method of scaling-up crop yield under CAPS with drip irrigation is developed by integrating a biophysical model: APEX (agricultural policy environmental eXtender), and a Geographic Information System (GIS)-based multi-criteria evaluation (MCE) technique. Topography, land use, proximity to road networks, and population density were considered in identifying potentially irrigable land. Weather and soil texture data were used to delineate unique climate zones with similar soil properties for crop yield simulation using well-calibrated crop model parameters. Crops water demand for the cropping periods was used to determine groundwater potential for irrigation. The calibrated APEX crop model was then used to predict crop yield across the different climatic and soil zones. The MCE technique identified about 18.7 Mha of land (16.7% of the total landmass) as irrigable land in Ethiopia. Oromia has the highest irrigable land in the nation (35.4% of the irrigable land) when compared to other regional states. Groundwater could supply a significant amount of the irrigable land for dry season production under CAPS with drip irrigation for the various vegetables tested at the experimental sites with about 2.3 Mha, 3.5 Mha, 1.6 Mha, and 1.4 Mha of the irrigable land available to produce garlic, onion, cabbage, and tomato, respectively. When comparing regional states, Oromia had the highest groundwater potential (40.9% of total potential) followed by Amhara (20%) and Southern Nations, Nationalities, and Peoples (16%). CAPS with drip irrigation significantly increased groundwater potential for irrigation when compared to CTPS (conventional tillage production system) with traditional irrigation practice (i.e., 0.6 Mha under CTPS versus 2.2 Mha under CAPS on average). Similarly, CAPS with drip irrigation depicted significant improvement in crop productivity when compared to CTPS. APEX simulation of the average fresh vegetable yield on the irrigable land under CAPS with drip irrigation ranged from 1.8–2.8 t/ha, 1.4–2.2 t/ha, 5.5–15.7 t/ha, and 8.3–12.9 t/ha for garlic, onion, tomato, and cabbage, respectively. CAPS with drip irrigation technology could improve groundwater potential for irrigation up to five folds and intensify crop productivity by up to three to four folds across the nation

    Experimental Evaluation of Conservation Agriculture with Drip Irrigation for Water Productivity in Sub-Saharan Africa

    Get PDF
    A field-scale experimental study was conducted in Sub-Saharan Africa (Ethiopia and Ghana) to examine the effects of conservation agriculture (CA) with drip irrigation system on water productivity in vegetable home gardens. CA here refers to minimum soil disturbance (no-till), year-round organic mulch cover, and diverse cropping in the rotation. A total of 28 farmers (13 farmers in Ethiopia and 15 farmers in Ghana) participated in this experiment. The experimental setup was a paired ‘t’ design on a 100 m2 plot; where half of the plot was assigned to CA and the other half to conventional tillage (CT), both under drip irrigation system. Irrigation water use and crop yield were monitored for three seasons in Ethiopia and one season in Ghana for vegetable production including garlic, onion, cabbage, tomato, and sweet potato. Irrigation water use was substantially lower under CA, 18% to 45.6%, with a substantial increase in crop yields, 9% to about two-fold, when compared with CT practice for the various vegetables. Crop yields and irrigation water uses were combined into one metric, water productivity, for the statistical analysis on the effect of CA with drip irrigation system. One-tailed paired ‘t’ test statistical analysis was used to examine if the mean water productivity in CA is higher than that of CT. Water productivity was found to be significantly improved (α = 0.05) under the CA practice; 100%, 120%, 222%, 33%, and 49% for garlic, onion, tomato, cabbage, and sweet potato respectively. This could be due to the improvement of soil quality and structure due to CA practice, adding nutrients to the soil and sticking soil particles together (increase soil aggregates). Irrigation water productivity for tomato under CA (5.17 kg m−3 in CA as compared to 1.61 kg m−3 in CT) is found to be highest when compared to water productivity for the other vegetables. The mulch cover provided protection for the tomatoes from direct contact with the soil and minimized the chances of soil-borne diseases. Adapting to CA practices with drip irrigation in vegetable home gardens is, therefore, a feasible strategy to improve water use efficiency, and to intensify crop yield, which directly contributes towards the sustainability of livelihoods of smallholder farmers in the region

    Conservation agriculture with drip irrigation: Effects on soil quality and crop yield in sub-Saharan Africa

    Get PDF
    The traditional agriculture production system in sub-Saharan Africa (SSA) caused significant soil erosion and degradation of soil quality. In addition, dependability of rainfall for irrigation needs limits the crop production. Advanced agricultural practices are thus needed at the local level to sustain the livelihood of smallholder farmers in the region. In this study, conservation agriculture (CA) practice with drip irrigation technology was compared (using field experiments and watershed modeling) with the traditional conventional tillage (CT) practice for its potential in improving soil quality and crop productivity in the region. Biophysical data were collected (2015 to 2017) from a total of 43 paired plots (CA and CT) at four study sites in SSA: Dangishita and Robit in Ethiopia, Yemu in Ghana, and Mkindo in Tanzania. The Agricultural Policy/Environmental eXtender (APEX) model was calibrated and validated with reasonable efficiency in simulating crop yields for both CA and CT practices; average PBIAS ≤±12% and ≤±11%, for CA and CT. The impact of the CA system on soil quality (soil carbon [C] and nitrogen [N]) was analyzed based on the well-tested model prediction results. The total C and N were increased under CA across the study sites on average by 6% and 4.1%, when compared to CT over the study period. Both the experiment and model prediction showed that crop yield was significantly improved by CA—on average 37.4% increases across the sites when compared to CT. Conservation agriculture with drip irrigation was an efficient local strategy to improve crop production in the region while enhancing the ecosyste

    Effect of oral administration of Gnidia Stenophylla Gilg aqueous root extract on food intake and histology of gastrointestinal tract in mice

    Get PDF
    Background: Aqueous preparations of a medicinal plant, Gnidia stenophylla Gilg (Thymelaeaceae) are commonly used to cure malaria and other ailments in Ethiopia. This study evaluated the safety of the plant extract by determining its effects on food intake and histology of gastrointestinal tract (GIT) after oral administration for 13 weeks in albino mice.Methods: Thirty mice were equally assigned to three groups. Group I served as control and received a vehicle while groups II and III were given 400 and 800 mg/kg body weight/day plant extract respectively, orally, for 13 weeks. At the end of the study, the mice were scarified and postmortem gross and histopathological evaluations were performed on their stomachs and intestines.Results: Chronic oral treatment with the extract for 13 weeks did not induce any sign of illness and death and had no effect on food intake of the mice. Furthermore, extract treatment at both doses did not produce any detectable gross morphological change in GIT. Microscopic evaluation of sections of the stomach, duodenum and jejunum of the mice treated with 400 mg/kg body weight did not show any histopathological change. In the mice treated with 800 mg/kg body weight, however, the GIT sections revealed cytoplasmic vacuolation, hydropic degeneration and excessive erosion of the surface mucosal cells.Conclusion: The results of this study revealed that aqueous root extract of G. stenophylla at effective antimalarial dose is safe even when taken for a longer period in mice. At a higher dose, however, the extract may induce gastrointestinal irritation. Further studies on other vital organs and non-rodent species including humans are recommended.Keywords: Gnidia stenophylla Gilg, aqueous root extract, chronic toxicity, histology, histopathology, gastrointestinal tract, gastrointestinal irritation deficit, Ethiopi

    Vaccine safety practices and its implementation barriers in Northwest Ethiopia: A qualitative study

    Get PDF
    AbstractIntroduction: Even if immunization coverage increases over time, it is imperative to ascertain the safety and efficient coverage of immunization services. However, evidence on the safety practices of vaccines is limited. Assessing the implementation status of vaccine safety practices and its implementation barriers is crucial for program monitoring, interventions, and improvements. Therefore, this study aimed to assess vaccine safety practices and its implementation barriers in the public health facilities of Northwest Ethiopia.Aim: The objective of this study was to assess the safety practices of vaccines and to explore its implementation barriers.Methods: A qualitative research approach was adopted for this study. Face-to-face in-depth interviews with key-informants and immunization session-observations were the main data collection methods used in this study. Study participants were purposively selected based on their experience and knowledge about the subject matter and framework analysis was performed.Result: The study's findings revealed that the safety practices of vaccines from the cold chain system, vaccine administration and waste disposal and management perspective was suboptimal. Many barriers influencing vaccine safety practices were also explored. They are 1) vaccine storage and handling, 2). vaccine administration/delivery, 3) waste disposal and management, 4) communication, 5) monitoring and evaluation and 6) and resource.Conclusion: Efforts to promote the safety of vaccines and vaccination practices is a complex phenomenon and demands multidisciplinary action. Based on our findings, improved vaccine storage and handling, proper administration of vaccines based on guidelines, proper disposal and management of waste, and effective communication, and monitoring can contribute to the safe delivery of vaccination practices. Furthermore, improving the financial freedom of the facilities could increase the availability of essential resources and equipment that can safely store vaccines. [Ethiop. J. Health Dev. 2021; 35(SI-3): 111-117]Keywords: Immunization safety practice, Qualitative study, Framework analysis, Northwest Ethiopi

    Dynamics of soil quality in a conserved landscape in the highland sub humid ecosystem, Northwestern Ethiopia

    Get PDF
    Several studies have assessed the dynamics of soil quality induced by soil and water conservation (SWC), but many showed disagreement over the efficacy of SWC interventions in the Ethiopian highlands. This study used a before and after soil and water conservation practices (SWCP) comparison approach to evaluate the effect of SWCP on soil quality dynamics. Fifty-four composite and 10 undisturbed soil samples were collected in 2012 (before SWCP) and 2022 (after SWCP). Statistical mean, analysis of variance, and principal component analysis were applied to test the significant differences among treatments. The findings demonstrated that SWCP has significantly improved most of the soil quality indicators such as soil organic matter, total nitrogen, available phosphorous, pH, total porosity, field capacity, and available water, and reduced the value of bulk density and coarse fragments. The interaction effect of landscape position and types of structures provided statistically significant results for soil organic matter, total nitrogen, magnesium, calcium, and base saturation. Soil and stone-faced soil bunds treated at lower landscapes were superior in improving soil quality attributes. The soil quality indexing showed, the overall soil quality improvement as a result of SWCP was about 32.15%. The level of improvement for different SWCPs was 32% for stone faced soil bunds and 33% for soil bunds. The findings revealed that SWCP implementation can improve soil quality. Soil organic matter is a key biological quality component that contributed 25% to the soil quality index and highly impacted soil physicochemical properties. We suggest additional assessment of best and integrated land management practices to ensure further improvement in soil quality, crop productivity, and ecosystem services in the subhumid ecosystems

    Simulating Potential Impacts of Solar MajiPump on the Economy and Nutrition of Smallholder Farmers in Sub-Humid Ethiopia

    Get PDF
    Irrigation is widely considered a potential means to improve agricultural productivity, nutrition, and income, as farmers can carry out farming and production year-round. However, the feasibility of irrigation technologies is highly dependent on the long-term economic return farmers achieve. Solar-based irrigation could address the challenges of underinvestment in irrigation within Africa. Evidence on the economic viability of the adopted solar pumps such as MajiPump is very scant and focused on ex post evaluation. This study evaluated the income and nutritional feasibility of solar-powered irrigation using the MajiPump in sub-humid Ethiopian highlands using the farm simulation (FARMSIM) model and compared it with the manual pulley system. Results from the FARMSIM model show that farmers’ adoption of Maji solar pump technology to grow vegetables is economically feasible with financial support such as credit or loan for initial and capital investment to acquire the pump. The average profit under the solar MajiPump, drip irrigation, and conservation agriculture was 3.6 times higher than that of the baseline scenario. While the pulley technology provides the same amount of irrigation water to grow vegetables, its feasibility is limited due to high labor costs and time, estimated to be more than seven times the baseline. The simulation results show that the alternative scenarios’ nutrition level has improved relative to other scenarios and met the minimum daily average nutrition requirement level for proteins, iron, and vitamin A but fell short in fat, calcium, and calories. The results suggest that farmers who adopt improved small-scale irrigation technologies (solar MajiPump and drip system) have a higher potential to increase production and income from irrigated crops and improve their nutrition if part of the income generated is used to purchase supplemental food for their nutrition

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. Methods The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODErn), to generate cause fractions and cause specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised. Findings At the broadest grouping of causes of death (Level 1), non-communicable diseases (NC Ds) comprised the greatest fraction of deaths, contributing to 73.4% (95% uncertainty interval [UI] 72.5-74.1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional (CMNN) causes accounted for 186% (17.9-19.6), and injuries 8.0% (7.7-8.2). Total numbers of deaths from NCD causes increased from 2007 to 2017 by 22.7% (21.5-23.9), representing an additional 7.61 million (7. 20-8.01) deaths estimated in 2017 versus 2007. The death rate from NCDs decreased globally by 7.9% (7.08.8). The number of deaths for CMNN causes decreased by 222% (20.0-24.0) and the death rate by 31.8% (30.1-33.3). Total deaths from injuries increased by 2.3% (0-5-4-0) between 2007 and 2017, and the death rate from injuries decreased by 13.7% (12.2-15.1) to 57.9 deaths (55.9-59.2) per 100 000 in 2017. Deaths from substance use disorders also increased, rising from 284 000 deaths (268 000-289 000) globally in 2007 to 352 000 (334 000-363 000) in 2017. Between 2007 and 2017, total deaths from conflict and terrorism increased by 118.0% (88.8-148.6). A greater reduction in total deaths and death rates was observed for some CMNN causes among children younger than 5 years than for older adults, such as a 36.4% (32.2-40.6) reduction in deaths from lower respiratory infections for children younger than 5 years compared with a 33.6% (31.2-36.1) increase in adults older than 70 years. Globally, the number of deaths was greater for men than for women at most ages in 2017, except at ages older than 85 years. Trends in global YLLs reflect an epidemiological transition, with decreases in total YLLs from enteric infections, respirator}, infections and tuberculosis, and maternal and neonatal disorders between 1990 and 2017; these were generally greater in magnitude at the lowest levels of the Socio-demographic Index (SDI). At the same time, there were large increases in YLLs from neoplasms and cardiovascular diseases. YLL rates decreased across the five leading Level 2 causes in all SDI quintiles. The leading causes of YLLs in 1990 neonatal disorders, lower respiratory infections, and diarrhoeal diseases were ranked second, fourth, and fifth, in 2017. Meanwhile, estimated YLLs increased for ischaemic heart disease (ranked first in 2017) and stroke (ranked third), even though YLL rates decreased. Population growth contributed to increased total deaths across the 20 leading Level 2 causes of mortality between 2007 and 2017. Decreases in the cause-specific mortality rate reduced the effect of population growth for all but three causes: substance use disorders, neurological disorders, and skin and subcutaneous diseases. Interpretation Improvements in global health have been unevenly distributed among populations. Deaths due to injuries, substance use disorders, armed conflict and terrorism, neoplasms, and cardiovascular disease are expanding threats to global health. For causes of death such as lower respiratory and enteric infections, more rapid progress occurred for children than for the oldest adults, and there is continuing disparity in mortality rates by sex across age groups. Reductions in the death rate of some common diseases are themselves slowing or have ceased, primarily for NCDs, and the death rate for selected causes has increased in the past decade. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore