59 research outputs found

    MODIFIED NATURAL ZEOLITE AND BENTONITE AS ADSORBENTS OF HEAVY METAL IONS FROM POLLUTED GROUNDWATER IN YOGYAKARTA URBAN ARE, INDONESIA

    Get PDF
    Groundwater quality in Yogyakarta city has become the major concern due to the presence of heavy metals originated from batik home industries, slaughterhouses, and leather factories, especially in shallow groundwater. In response to the above problems, the naturally abundant zeolite and bentonite in Sidomulyo and Bandung areas were respectively sampled along with the metal-containing groundwater in Yogyakarta urban area for batch adsorption experiment. Before put into experiment, the zeolite and bentonite were characteristically investigated by means of XRD, SEM, chemical composition, and physical property analyses. Also, they were thermally activated to improve their qualities in terms of increase in CEC, whereas the groundwater was analyzed for heavy metal concentrations (Cd, Cr, Cu, Fe, Zn) and its physical property. Five logarithmic amounts of this modified zeolite or bentonite were separately and incrementally introduced into the same three solutions of heavy metals. After the experiment, all the solutions were re-analyzed for the rest of heavy metals to figure out the optimum adsorption capacity of zeolite and bentonite. The outcomes of this experiment will be beneficial in enhancing the groundwater quality for consumptions in Yogyakarta city as well as other places in Indonesia, and will also imply the zeolite and bentonite in commercialization. Keywords: zeolite, bentonite, groundwater, heavy metal, adsorptio

    Spatiotemporal changes in biomass after selective logging in a lowland tropical rainforest in peninsular Malaysia

    Get PDF
    We studied biomass changes in a lowland tropical rain forest in the Pasoh Forest Reserve of Peninsular Malaysia after selective logging in 1958. A tree census was undertaken every 2 years from 1998 to 2012 in a 6-ha logged forest plot. Total aboveground biomass (AGB) was 72 % of that in a primary forest plot within the same reserve in 1998, but reached 87 % in 2012. AGB regrowth was spatially variable within the logged forest plot and was much less in swampy areas than in upland areas. The overall annual growth rate of AGB in the logged forest throughout the study period was 1.5 % and slowed (to 0.6 %) in a dry period (2004-2006). The biomass of large trees (DBH ≥ 50 cm) increased by 56 % during the study period, but amounted to only 58 % of the biomass of the corresponding size class in the primary forest, suggesting that stand structure is still recovering from logging. Spatiotemporal variation in AGB recovery after logging needs to be taken into account for logging and subsequent management of the tropical lowland forest biome

    Early effect of oral administration of omeprazole with mosapride as compared with those of omeprazole alone on the intragastric pH

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ideal medication for acid-related diseases should have a rapid onset of action to promote hemostasis and cause efficient resolution of symptoms. The aim of our study was to comparatively investigate the inhibitory effect on gastric acid secretion of a single oral administration of omeprazole plus mosapride with that of omeprazole alone.</p> <p>Methods</p> <p>Ten Helicobacter pylori-negative male subjects participated in this randomized, two-way crossover study. Intragastric pH was monitored continuously for 6 hours after a single oral administration of omeprazole 20 mg or that of omeprazole 20 mg plus mosapride 5 mg (the omeprazole being administered one hour after the mosapride). Each administration was separated by a 7-days washout period.</p> <p>Results</p> <p>The average pH during the 6-hour period after administration of omeprazole 20 mg plus mosapride 5 mg was higher than that after administration of omeprazole 20 mg alone (median: 3.22 versus 4.21, respectively; <it>p </it>= 0.0247).</p> <p>Conclusions</p> <p>In H. pylori -negative healthy male subjects, an oral dose of omeprazole 20 mg plus mosapride 5 mg increased the intragastric pH more rapidly than omeprazole 20 mg alone.</p

    GWAS of bipolar disorder

    Get PDF
    Genome-wide association studies (GWASs) have identified several susceptibility loci for bipolar disorder (BD) and shown that the genetic architecture of BD can be explained by polygenicity, with numerous variants contributing to BD. In the present GWAS (Phase I/II), which included 2964 BD and 61 887 control subjects from the Japanese population, we detected a novel susceptibility locus at 11q12.2 (rs28456, P=6.4 × 10−9), a region known to contain regulatory genes for plasma lipid levels (FADS1/2/3). A subsequent meta-analysis of Phase I/II and the Psychiatric GWAS Consortium for BD (PGC-BD) identified another novel BD gene, NFIX (P best=5.8 × 10−10), and supported three regions previously implicated in BD susceptibility: MAD1L1 (P best=1.9 × 10−9), TRANK1 (P best=2.1 × 10−9) and ODZ4 (P best=3.3 × 10−9). Polygenicity of BD within Japanese and trans-European-Japanese populations was assessed with risk profile score analysis. We detected higher scores in BD cases both within (Phase I/II) and across populations (Phase I/II and PGC-BD). These were defined by (1) Phase II as discovery and Phase I as target, or vice versa (for ‘within Japanese comparisons’, Pbest~10−29, R2~2%), and (2) European PGC-BD as discovery and Japanese BD (Phase I/II) as target (for ‘trans-European-Japanese comparison,’ Pbest~10−13, R2~0.27%). This ‘trans population’ effect was supported by estimation of the genetic correlation using the effect size based on each population (liability estimates~0.7). These results indicate that (1) two novel and three previously implicated loci are significantly associated with BD and that (2) BD ‘risk’ effect are shared between Japanese and European populations

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    Adsorption and co-precipitation behavior of arsenate, chromate, selenate and boric acid with synthetic allophane-like materials

    Get PDF
    Pollution caused by boric acid and toxic anions such as As(V), Cr(VI) and Se(VI) is hazardous to human health and environment. The sorption characteristics of these environmentally significant ionic species on allophane-like nanoparticles was investigated in order to determine whether allophane can reduce their mobility in the subsurface environment at circum-neutral pH condition. Solutions containing 100 or 150 mmol of AlCl3. 6H2O were mixed to 100 mmol of Na4SiO4 and the pH were adjusted to 6.4 ± 0.3. The mineral suspensions were shaken for 1 hr and incubated at 80℃ for 5 days. Appropriate amounts of As, B, Cr and Se solutions were added separately during and after allophane precipitation. The results showed that As(V) and boric acid can be irreversibly fixed during co-precipitation in addition to surface adsorption. However, Cr(VI) and Se(VI) retention during and after allophane precipitation is mainly controlled by surface adsorption. The structurally fixed As(V) and boric acid were more resistant to release than those bound on the surface. The sorption characteristics of oxyanions and boric acid was also influenced by the final Si/Al molar ratio of allophane in which Al-rich allophane tend to have higher uptake capacity. The overall results of this study have demonstrated the role of allophane-like nanoparticles and the effect of its Si/Al ratio on As, B, Cr and Se transport processes in the subsurface environment

    Immobilization of selenium by Mg-bearing minerals and its implications for selenium removal from contaminated water and wastewater

    Get PDF
    This study examines the possible immobilization of Se(VI) by Mg-bearing hydrotalcite and serpentine-like minerals. Selenate immobilization was carried out via adsorption and coprecipitation reactions under alkaline conditions. The effects of Mg/Al ratios, temperature and initial Se concentration on the adsorption and/or coprecipitation of Se6+ onto these Mg-bearing minerals were examined. The sorption mechanism of Se(VI) was examined by XAFS analysis to give account of its local coordination environment. The results showed that Se(VI) sorption behavior by hydrotalcite and serpentine-like minerals was mainly influenced by their Mg/Al ratio. Higher removal efficiency of Se(VI) (> 60 and 90% at 100 and 10 ppm initial Se concentration) was observed during coprecipitation onto hydrotalcite and serpentine-like phases with Mg/Al ratios of 2 and 1.25, respectively. The formation of Mg-bearing minerals was enhanced at higher temperature (at 75 degrees C) but the effect of temperature in Se(VI) immobilization was very minimal. Selenate was mainly retained via outer-sphere complexation but an irreversible fraction of sorbed selenate (about 20%) was observed in these mineral phases. In overall, this study has several important implications in the possible application of hydrotalcite and aluminian serpentine in Se(VI) immobilization

    Mobilization and speciation of arsenic from hydrothermally altered rock containing calcite and pyrite under anoxic conditions

    Get PDF
    The effects of water residence time and anoxic conditions on the mobilization and speciation of arsenic (As) in a calcite- and pyrite-bearing altered rock excavated during a road-tunnel project has been evaluated using batch and column laboratory experiments. Higher infiltration rates (i.e., shorter water residence times) enhanced the leaching of As due to the higher pH values of the effluents and more rapid transport of dissolved As through the columns. The concentration of As in the effluent also increased under anoxic conditions regardless of the water residence time. This enhanced leaching of As under anoxic conditions could be attributed to a significant pH increase and decreased Fe oxyhydroxides/oxides precipitation compared to similar experiments done under ambient conditions. Processes that controlled the evolution of pH and the temporal release mechanisms of As under anoxic conditions were identical to those previously observed under ambient conditions: the dissolution of soluble phases, pyrite oxidation, co-precipitation and/or adsorption/desorption reactions. Speciation of As in the column experiments could partly be attributed to the pH-dependent adsorption of As species onto Fe oxyhydroxides/oxides precipitates. Moreover, apparent equilibriums of the total As and arsenite (As[III]) concentrations were delayed under anoxic conditions in both batch and column experiments
    corecore