214 research outputs found

    Dynamic interactions within sub-complexes of the H/ACA pseudouridylation guide RNP

    Get PDF
    H/ACA RNP complexes change uridines to pseudouridines in target non-coding RNAs in eukaryotes and archaea. H/ACA RNPs are comprised of a guide RNA and four essential proteins: Cbf5 (pseudouridine synthase), L7Ae, Gar1 and Nop10 in archaea. The guide RNA captures the target RNA via two antisense elements brought together to form a contiguous binding site within the pseudouridylation pocket (internal loop) of the guide RNA. Cbf5 and L7Ae interact independently with the guide RNA, and here we have examined the impacts of these proteins on the RNA in nucleotide protection assays. The results indicate that the interactions observed in a fully assembled H/ACA RNP are established in the sub-complexes, but also reveal a unique Cbf5–guide RNA interaction that is displaced by L7Ae. In addition, the results indicate that L7Ae binding at the kink (k)-turn of the guide RNA induces the formation of the upper stem, and thus also the pseudouridylation pocket. Our findings indicate that L7Ae is essential for formation of the substrate RNA binding site in the archaeal H/ACA RNP, and suggest that k-turn-binding proteins may remodel partner RNAs with important effects distant from the protein-binding site

    The Lsm2-8 complex determines nuclear localization of the spliceosomal U6 snRNA

    Get PDF
    Lsm proteins are ubiquitous, multifunctional proteins that are involved in the processing and/or turnover of many, if not all, RNAs in eukaryotes. They generally interact only transiently with their substrate RNAs, in keeping with their likely roles as RNA chaperones. The spliceosomal U6 snRNA is an exception, being stably associated with the Lsm2-8 complex. The U6 snRNA is generally considered to be intrinsically nuclear but the mechanism of its nuclear retention has not been demonstrated, although La protein has been implicated. We show here that the complete Lsm2-8 complex is required for nuclear accumulation of U6 snRNA in yeast. Therefore, just as Sm proteins effect nuclear localization of the other spliceosomal snRNPs, the Lsm proteins mediate U6 snRNP localization except that nuclear retention is the likely mechanism for the U6 snRNP. La protein, which binds only transiently to the nascent U6 transcript, has a smaller, apparently indirect, effect on U6 localization that is compatible with its proposed role as a chaperone in facilitating U6 snRNP assembly

    Formation of the conserved pseudouridine at position 55 in archaeal tRNA

    Get PDF
    Pseudouridine (Ψ) located at position 55 in tRNA is a nearly universally conserved RNA modification found in all three domains of life. This modification is catalyzed by TruB in bacteria and by Pus4 in eukaryotes, but so far the Ψ55 synthase has not been identified in archaea. In this work, we report the ability of two distinct pseudouridine synthases from the hyperthermophilic archaeon Pyrococcus furiosus to specifically modify U55 in tRNA in vitro. These enzymes are (pfu)Cbf5, a protein known to play a role in RNA-guided modification of rRNA, and (pfu)PsuX, a previously uncharacterized enzyme that is not a member of the TruB/Pus4/Cbf5 family of pseudouridine synthases. (pfu)PsuX is hereafter renamed (pfu)Pus10. Both enzymes specifically modify tRNA U55 in vitro but exhibit differences in substrate recognition. In addition, we find that in a heterologous in vivo system, (pfu)Pus10 efficiently complements an Escherichia coli strain deficient in the bacterial Ψ55 synthase TruB. These results indicate that it is probable that (pfu)Cbf5 or (pfu)Pus10 (or both) is responsible for the introduction of pseudouridine at U55 in tRNAs in archaea. While we cannot unequivocally assign the function from our results, both possibilities represent unexpected functions of these proteins as discussed herein

    Cyclin E and CDK2 Repress the Terminal Differentiation of Quiescent Cells after Asymmetric Division in C. elegans

    Get PDF
    Coordination between cell proliferation and differentiation is important in normal development and oncogenesis. These processes usually have an antagonistic relationship, in that differentiation is blocked in proliferative cells, and terminally differentiated cells do not divide. In some instances, cyclins, cyclin-dependent kinases (CDKs) and their inhibitors (CKIs) play important roles in this antagonistic regulation. However, it is unknown whether CKIs and cyclin/CDKs regulate the uncommitted state in quiescent cells where CDK activities are likely to be low. Here, we show in C. elegans that cye-1/cyclin E and cdk-2/CDK2 repress terminal differentiation in quiescent cells. In cye-1 mutants and cdk-2(RNAi) animals, after asymmetric division, certain quiescent cells adopted their sister cells' phenotype and differentiated at some frequency. In contrast, in cki-1(RNAi) animals, these cells underwent extra divisions, while, in cki-1(RNAi); cdk-2(RNAi) or cki-1(RNAi); cye-1 animals, they remained quiescent or differentiated. Therefore, in wild-type animals, CKI-1/CKI in these cells maintained quiescence by inhibiting CYE-1/CDK-2, while sufficient CYE-1/CDK-2 remained to repress the terminal differentiation. The difference between sister cells is regulated by the Wnt/MAP kinase pathway, which causes asymmetric expression of CYE-1 and CKI-1. Our results suggest that the balance between the levels of CKI and cyclin E determines three distinct cell states: terminally differentiated, quiescent and uncommitted, and proliferating

    RNA Modulators of Complex Phenotypes in Mammalian Cells

    Get PDF
    RNA-mediated gene silencing, in the form of RNA interference (RNAi) or microRNAs (miRNAs) has provided novel tools for gene discovery and validation in mammalian cells. Here, we report on the construction and application of a random small RNA expression library for use in identifying small interfering RNA (siRNA) effectors that can modify complex cellular phenotypes in mammalian cells. The library is based in a retroviral vector and uses convergent promoters to produce unique small complementary RNAs. Using this library, we identify a range of small RNA-encoding gene inserts that overcome resistance to 5-fluorouracil (5-FU)- or tumour necrosis factor alpha (TNF-α)- induced cell death in colorectal cancer cells. We demonstrate the utility of this technology platform by identifying a key RNA effector, in the form of a siRNA, which overcomes cell death induced by the chemotherapeutic 5-FU. The technology described has the potential to identify both functional RNA modulators capable of altering physiological systems and the cellular target genes altered by these modulators

    Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells

    Get PDF
    Bacterial type II CRISPR-Cas9 systems have been widely adapted for RNA-guided genome editing and transcription regulation in eukaryotic cells, yet their in vivo target specificity is poorly understood. Here we mapped genome-wide binding sites of a catalytically inactive Cas9 (dCas9) from Streptococcus pyogenes loaded with single guide RNAs (sgRNAs) in mouse embryonic stem cells (mESCs). Each of the four sgRNAs we tested targets dCas9 to between tens and thousands of genomic sites, frequently characterized by a 5-nucleotide seed region in the sgRNA and an NGG protospacer adjacent motif (PAM). Chromatin inaccessibility decreases dCas9 binding to other sites with matching seed sequences; thus 70% of off-target sites are associated with genes. Targeted sequencing of 295 dCas9 binding sites in mESCs transfected with catalytically active Cas9 identified only one site mutated above background levels. We propose a two-state model for Cas9 binding and cleavage, in which a seed match triggers binding but extensive pairing with target DNA is required for cleavage.National Institutes of Health (U.S.) (Grant RO1-GM34277)National Institutes of Health (U.S.) (Grant R01-CA133404)National Cancer Institute (U.S.) (Grant PO1-CA42063)National Cancer Institute (U.S.) (Cancer Center Support (Core) Grant P30-CA14051)National Institutes of Health (U.S.) (Director's Pioneer Award 1DP1-MH100706)Damon Runyon Cancer Research FoundationKinship Foundation. Searle Scholars ProgramSimons Foundatio

    A gene expression atlas of the domestic pig

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This work describes the first genome-wide analysis of the transcriptional landscape of the pig. A new porcine Affymetrix expression array was designed in order to provide comprehensive coverage of the known pig transcriptome. The new array was used to generate a genome-wide expression atlas of pig tissues derived from 62 tissue/cell types. These data were subjected to network correlation analysis and clustering.</p> <p>Results</p> <p>The analysis presented here provides a detailed functional clustering of the pig transcriptome where transcripts are grouped according to their expression pattern, so one can infer the function of an uncharacterized gene from the company it keeps and the locations in which it is expressed. We describe the overall transcriptional signatures present in the tissue atlas, where possible assigning those signatures to specific cell populations or pathways. In particular, we discuss the expression signatures associated with the gastrointestinal tract, an organ that was sampled at 15 sites along its length and whose biology in the pig is similar to human. We identify sets of genes that define specialized cellular compartments and region-specific digestive functions. Finally, we performed a network analysis of the transcription factors expressed in the gastrointestinal tract and demonstrate how they sub-divide into functional groups that may control cellular gastrointestinal development.</p> <p>Conclusions</p> <p>As an important livestock animal with a physiology that is more similar than mouse to man, we provide a major new resource for understanding gene expression with respect to the known physiology of mammalian tissues and cells. The data and analyses are available on the websites <url>http://biogps.org and http://www.macrophages.com/pig-atlas</url>.</p

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
    • …
    corecore