6 research outputs found

    Demonstration of the multimaterial coating concept to reduce thermal noise in gravitational-wave detectors

    Get PDF
    Thermal noise associated with the mechanical loss of current highly reflective mirror coatings is a critical limit to the sensitivity of gravitational-wave detectors. Several alternative coating materials show potential for reducing thermal noise, but cannot be used due to their high optical absorption. Multimaterial coatings have been proposed to enable the use of such materials to reduce thermal noise while minimizing their impact on the total absorption of the mirror coating. Here we present experimental verification of the multimaterial concept, by integrating aSi into a highly reflective SiO2 and Ta2O5 multilayer coating. We show a significant thermal noise improvement and demonstrate consistent optical and mechanical performance. The multimaterial coating survives the heat treatment required to minimize the absorption of the aSi layers, with no adverse effects from the different thermomechanical properties of the three materials

    Influence of deposition parameters on the optical absorption of amorphous silicon thin films

    Get PDF
    Amorphous silicon (aSi) is a promising material for application in mirror coatings with low thermal noise in future gravitational-wave detectors. However, the optical absorption of aSi is currently too high to meet the requirements of these instruments. Previously measured absorption values vary significantly for different deposition methods and postdeposition treatments. To investigate the absorption of aSi, we systematically varied key deposition parameters using pulsed laser deposition. Varying the deposition temperature resulted in a spread in mobility gap energy of the aSi; however, no clear correlation of temperature and mobility gap could be observed. Varying the pulse energy and repetition frequency altered the deposition rate of the coating and produced a correlated change in the absorption

    Titania mixed with silica: a low thermal-noise coating material for gravitational-wave detectors

    Get PDF
    Coating thermal noise is one of the dominant noise sources in current gravitational wave detectors and ultimately limits their ability to observe weaker or more distant astronomical sources. This Letter presents investigations of TiO2 mixed with SiO2 (TiO2:SiO2) as a coating material. We find that, after heat treatment for 100 h at 850 °C, thermal noise of a highly reflective coating comprising of TiO2:SiO2 and SiO2 reduces to 76% of the current levels in the Advanced LIGO and Advanced Virgo detectors—with potential for reaching 45%, if we assume the mechanical loss of state-of-the-art SiO2 layers. Furthermore, those coatings show low optical absorption of <1  ppm and optical scattering of â‰Č5  ppm. Notably, we still observe excellent optical and thermal noise performance following crystallization in the coatings. These results show the potential to meet the parameters required for the next upgrades of the Advanced LIGO and Advanced Virgo detectors

    Model comparison from LIGO–Virgo data on GW170817’s binary components and consequences for the merger remnant

    No full text
    International audienceGW170817 is the very first observation of gravitational waves originating from the coalescence of two compact objects in the mass range of neutron stars, accompanied by electromagnetic counterparts, and offers an opportunity to directly probe the internal structure of neutron stars. We perform Bayesian model selection on a wide range of theoretical predictions for the neutron star equation of state. For the binary neutron star hypothesis, we find that we cannot rule out the majority of theoretical models considered. In addition, the gravitational-wave data alone does not rule out the possibility that one or both objects were low-mass black holes. We discuss the possible outcomes in the case of a binary neutron star merger, finding that all scenarios from prompt collapse to long-lived or even stable remnants are possible. For long-lived remnants, we place an upper limit of 1.9 kHz on the rotation rate. If a black hole was formed any time after merger and the coalescing stars were slowly rotating, then the maximum baryonic mass of non-rotating neutron stars is at most , and three equations of state considered here can be ruled out. We obtain a tighter limit of for the case that the merger results in a hypermassive neutron star

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore