90 research outputs found

    SHREC2020 track:Multi-domain protein shape retrieval challenge

    Get PDF
    Proteins are natural modular objects usually composed of several domains, each domain bearing a specific function that is mediated through its surface, which is accessible to vicinal molecules. This draws attention to an understudied characteristic of protein structures: surface, that is mostly unexploited by protein structure comparison methods. In the present work, we evaluated the performance of six shape comparison methods, among which three are based on machine learning, to distinguish between 588 multi-domain proteins and to recreate the evolutionary relationships at the proteinand species levels of the SCOPe database. The six groups that participated in the challenge submitted a total of 15 sets of results. We observed that the performance of all the methods significantly decreases at the species level, suggesting that shape-only protein comparison is challenging for closely related proteins. Even if the dataset is limited in size (only 588 proteins are considered whereas more than 160,000 protein structures are experimentally solved), we think that this work provides useful insights into the current shape comparison methods performance, and highlights possible limitations to large-scale applications due to the computational cost

    Surface-based protein domains retrieval methods from a SHREC2021 challenge

    Get PDF
    publication dans une revue suite à la communication hal-03467479 (SHREC 2021: surface-based protein domains retrieval)International audienceProteins are essential to nearly all cellular mechanism and the effectors of the cells activities. As such, they often interact through their surface with other proteins or other cellular ligands such as ions or organic molecules. The evolution generates plenty of different proteins, with unique abilities, but also proteins with related functions hence similar 3D surface properties (shape, physico-chemical properties, …). The protein surfaces are therefore of primary importance for their activity. In the present work, we assess the ability of different methods to detect such similarities based on the geometry of the protein surfaces (described as 3D meshes), using either their shape only, or their shape and the electrostatic potential (a biologically relevant property of proteins surface). Five different groups participated in this contest using the shape-only dataset, and one group extended its pre-existing method to handle the electrostatic potential. Our comparative study reveals both the ability of the methods to detect related proteins and their difficulties to distinguish between highly related proteins. Our study allows also to analyze the putative influence of electrostatic information in addition to the one of protein shapes alone. Finally, the discussion permits to expose the results with respect to ones obtained in the previous contests for the extended method. The source codes of each presented method have been made available online

    Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008

    Get PDF
    Recent breakthroughs in the determination of the crystal structures of G protein-coupled receptors (GPCRs) have provided new opportunities for structure-based drug design strategies targeting this protein family. With the aim of evaluating the current status of GPCR structure prediction and ligand docking, a community-wide, blind prediction assessment - GPCR Dock 2008 - was conducted in coordination with the publication of the crystal structure of the human adenosine A2Areceptor bound to the ligand ZM241385. Twenty-nine groups submitted 206 structural models before the release of the experimental structure, which were evaluated for the accuracy of the ligand binding mode and the overall receptor model compared with the crystal structure. This analysis highlights important aspects for success and future development, such as accurate modelling of structurally divergent regions and use of additional biochemical insight such as disulphide bridges in the extracellular loops

    Community-Wide Assessment of Protein-Interface Modeling Suggests Improvements to Design Methodology

    Get PDF
    The CAPRI and CASP prediction experiments have demonstrated the power of community wide tests of methodology in assessing the current state of the art and spurring progress in the very challenging areas of protein docking and structure prediction. We sought to bring the power of community wide experiments to bear on a very challenging protein design problem that provides a complementary but equally fundamental test of current understanding of protein-binding thermodynamics. We have generated a number of designed protein-protein interfaces with very favorable computed binding energies but which do not appear to be formed in experiments, suggesting there may be important physical chemistry missing in the energy calculations. 28 research groups took up the challenge of determining what is missing: we provided structures of 87 designed complexes and 120 naturally occurring complexes and asked participants to identify energetic contributions and/or structural features that distinguish between the two sets. The community found that electrostatics and solvation terms partially distinguish the designs from the natural complexes, largely due to the non-polar character of the designed interactions. Beyond this polarity difference, the community found that the designed binding surfaces were on average structurally less embedded in the designed monomers, suggesting that backbone conformational rigidity at the designed surface is important for realization of the designed function. These results can be used to improve computational design strategies, but there is still much to be learned; for example, one designed complex, which does form in experiments, was classified by all metrics as a non-binder

    Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment

    Get PDF
    We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70–75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70–80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.Cancer Research UK, Grant/Award Number: FC001003; Changzhou Science and Technology Bureau, Grant/Award Number: CE20200503; Department of Energy and Climate Change, Grant/Award Numbers: DE-AR001213, DE-SC0020400, DE-SC0021303; H2020 European Institute of Innovation and Technology, Grant/Award Numbers: 675728, 777536, 823830; Institut national de recherche en informatique et en automatique (INRIA), Grant/Award Number: Cordi-S; Lietuvos Mokslo Taryba, Grant/Award Numbers: S-MIP-17-60, S-MIP-21-35; Medical Research Council, Grant/Award Number: FC001003; Japan Society for the Promotion of Science KAKENHI, Grant/Award Number: JP19J00950; Ministerio de Ciencia e Innovación, Grant/Award Number: PID2019-110167RB-I00; Narodowe Centrum Nauki, Grant/Award Numbers: UMO-2017/25/B/ST4/01026, UMO-2017/26/M/ST4/00044, UMO-2017/27/B/ST4/00926; National Institute of General Medical Sciences, Grant/Award Numbers: R21GM127952, R35GM118078, RM1135136, T32GM132024; National Institutes of Health, Grant/Award Numbers: R01GM074255, R01GM078221, R01GM093123, R01GM109980, R01GM133840, R01GN123055, R01HL142301, R35GM124952, R35GM136409; National Natural Science Foundation of China, Grant/Award Number: 81603152; National Science Foundation, Grant/Award Numbers: AF1645512, CCF1943008, CMMI1825941, DBI1759277, DBI1759934, DBI1917263, DBI20036350, IIS1763246, MCB1925643; NWO, Grant/Award Number: TOP-PUNT 718.015.001; Wellcome Trust, Grant/Award Number: FC00100

    CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area

    No full text
    <div><p>Proteins are flexible, and this flexibility has an essential functional role. Flexibility can be observed in loop regions, rearrangements between secondary structure elements, and conformational changes between entire domains. However, most protein structure alignment methods treat protein structures as rigid bodies. Thus, these methods fail to identify the equivalences of residue pairs in regions with flexibility. In this study, we considered that the evolutionary relationship between proteins corresponds directly to the residue–residue physical contacts rather than the three-dimensional (3D) coordinates of proteins. Thus, we developed a new protein structure alignment method, contact area-based alignment (CAB-align), which uses the residue–residue contact area to identify regions of similarity. The main purpose of CAB-align is to identify homologous relationships at the residue level between related protein structures. The CAB-align procedure comprises two main steps: First, a rigid-body alignment method based on local and global 3D structure superposition is employed to generate a sufficient number of initial alignments. Then, iterative dynamic programming is executed to find the optimal alignment. We evaluated the performance and advantages of CAB-align based on four main points: (1) agreement with the gold standard alignment, (2) alignment quality based on an evolutionary relationship without 3D coordinate superposition, (3) consistency of the multiple alignments, and (4) classification agreement with the gold standard classification. Comparisons of CAB-align with other state-of-the-art protein structure alignment methods (TM-align, FATCAT, and DaliLite) using our benchmark dataset showed that CAB-align performed robustly in obtaining high-quality alignments and generating consistent multiple alignments with high coverage and accuracy rates, and it performed extremely well when discriminating between homologous and nonhomologous pairs of proteins in both single and multi-domain comparisons. The CAB-align software is freely available to academic users as stand-alone software at <a href="http://www.pharm.kitasato-u.ac.jp/bmd/bmd/Publications.html" target="_blank">http://www.pharm.kitasato-u.ac.jp/bmd/bmd/Publications.html</a>.</p></div
    • …
    corecore