47 research outputs found

    Too good to be cautious: High implicit self-esteem predicts self-reported dangerous mobile phone use

    Get PDF
    Mobile phone use and misuse have become a pressing challenge in today’s society. Dangerous mobile phone use, such as the use of a mobile phone while driving, is widely practiced, though banned in several jurisdictions. Research aiming at unfolding the psychological predictors of dangerous mobile phone use have so far been scarce. Especially, researchers have never taken the role of self-esteem into account, which is unfortunate given prior research linking self-esteem to addictive mobile phone use. In the present study, we evaluated the associations between both explicit and implicit self-esteem and dangerous mobile phone use, with a particular focus on phoning while driving. To do so, we assessed implicit self-esteem among 95 participants (89 females) via the Implicit Association Test and explicit self-esteem via a self-reported measure. Problematic mobile phone use and demographic data were assessed with self-reported measures. Implicit self-esteem predicted dangerous mobile phone use, even after we controlled for demographic data and mobile phone dependence. Explicit self-esteem, however, was related to neither dependence nor dangerous use of the mobile phone, thereby supporting the importance of distinguishing between explicit and implicit self-esteem. Our results set the scene for new research avenues regarding mobile phone use while driving

    Automatic social comparison: Cognitive load facilitates an increase in negative thought accessibility after thin ideal exposure among women

    Get PDF
    Women are routinely exposed to images of extremely slim female bodies (the thin ideal) in advertisements, even if they do not necessarily pay much attention to these images. We hypothesized that paradoxically, it is precisely in such conditions of low attention that the impact of the social comparison with the thin ideal might be the most pronounced. To test this prediction, one hundred and seventy-three young female participants were exposed to images of the thin ideal or of women’s fashion accessories. They were allocated to either a condition of high (memorizing 10 digits) or low cognitive load (memorizing 4 digits). The main dependent measure was implicit: mean recognition latency of negative words, relative to neutral words, as assessed by a lexical decision task. The results showed that thin-ideal exposure did not affect negative word accessibility under low cognitive load but that it increased it under high cognitive load. These findings are consistent with the hypothesis that social comparison with the thin ideal is an automatic process, and contribute to explain why some strategies to prevent negative effects of thin-ideal exposure are inefficient

    Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests

    Get PDF
    ests face increasing climate risk, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, Ψ50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk, little is known about how these vary across Earth’s largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters Ψ50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both Ψ50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth–mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon, with strong implications for the Amazon carbon sink

    Database of spatial distribution of non indigenous species in Spanish marine waters

    Get PDF
    Research in marine Spanish waters are focused on several actions to achieve an effectively management on protected areas, with the active participation of the stakeholders and research as basic tools for decision-making. Among these actions, there is one about the knowledge and control on NIS. One of its objectives is the creation of NIS factsheets, which are going to be added to the National Marine Biodiversity Geographical System (GIS) providing complementary information about taxonomic classification, common names, taxonomic synonyms, species illustrations, identification morphological characters, habitat in the native and introduced regions, biological and ecological traits, GenBank DNA sequences, world distribution, first record and evolution in the introduced areas, likely pathways of introduction, effects in the habitats and interaction with native species, and potential management measures to apply. The database will also provide data for (1) the European online platforms, (2) the environmental assessment for the Descriptor 2 (D2-NIS) of the EU Marine Strategy Framework Directive (MSFD), as well as (3) supporting decisions made by stakeholders. It is the result of extensive collaboration among scientist, manager’s and citizen science in the Spanish North-Atlantic, South-Atlantic, Gibraltar Strait-Alboran, Levantine-Balearic and Canary Islands marine divisions, providing an updated overview of the spatial distribution of relevant extended and invasive NIS of recent and established NIS introduced by maritime transport and aquaculture pathways, as well as on cryptogenic or native species in expansion due to the climatic water warming trend

    Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests

    Get PDF
    Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, Ψ50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3–5, little is known about how these vary across Earth’s largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters Ψ50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both Ψ50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth–mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink

    Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests

    Get PDF
    Funding: Data collection was largely funded by the UK Natural Environment Research Council (NERC) project TREMOR (NE/N004655/1) to D.G., E.G. and O.P., with further funds from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, finance code 001) to J.V.T. and a University of Leeds Climate Research Bursary Fund to J.V.T. D.G., E.G. and O.P. acknowledge further support from a NERC-funded consortium award (ARBOLES, NE/S011811/1). This paper is an outcome of J.V.T.’s doctoral thesis, which was sponsored by CAPES (GDE 99999.001293/2015-00). J.V.T. was previously supported by the NERC-funded ARBOLES project (NE/S011811/1) and is supported at present by the Swedish Research Council Vetenskapsrådet (grant no. 2019-03758 to R.M.). E.G., O.P. and D.G. acknowledge support from NERC-funded BIORED grant (NE/N012542/1). O.P. acknowledges support from an ERC Advanced Grant and a Royal Society Wolfson Research Merit Award. R.S.O. was supported by a CNPq productivity scholarship, the São Paulo Research Foundation (FAPESP-Microsoft 11/52072-0) and the US Department of Energy, project GoAmazon (FAPESP 2013/50531-2). M.M. acknowledges support from MINECO FUN2FUN (CGL2013-46808-R) and DRESS (CGL2017-89149-C2-1-R). C.S.-M., F.B.V. and P.R.L.B. were financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, finance code 001). C.S.-M. received a scholarship from the Brazilian National Council for Scientific and Technological Development (CNPq 140353/2017-8) and CAPES (science without borders 88881.135316/2016-01). Y.M. acknowledges the Gordon and Betty Moore Foundation and ERC Advanced Investigator Grant (GEM-TRAITS, 321131) for supporting the Global Ecosystems Monitoring (GEM) network (gem.tropicalforests.ox.ac.uk), within which some of the field sites (KEN, TAM and ALP) are nested. The authors thank Brazil–USA Collaborative Research GoAmazon DOE-FAPESP-FAPEAM (FAPESP 2013/50533-5 to L.A.) and National Science Foundation (award DEB-1753973 to L. Alves). They thank Serrapilheira Serra-1709-18983 (to M.H.) and CNPq-PELD/POPA-441443/2016-8 (to L.G.) (P.I. Albertina Lima). They thank all the colleagues and grants mentioned elsewhere [8,36] that established, identified and measured the Amazon forest plots in the RAINFOR network analysed here. The authors particularly thank J. Lyod, S. Almeida, F. Brown, B. Vicenti, N. Silva and L. Alves. This work is an outcome approved Research Project no. 19 from ForestPlots.net, a collaborative initiative developed at the University of Leeds that unites researchers and the monitoring of their permanent plots from the world’s tropical forests [61]. The authros thank A. Levesley, K. Melgaço Ladvocat and G. Pickavance for ForestPlots.net management. They thank Y. Wang and J. Baker, respectively, for their help with the map and with the climatic data. The authors acknowledge the invaluable help of M. Brum for kindly providing the comparison of vulnerability curves based on PAD and on PLC shown in this manuscript. They thank J. Martinez-Vilalta for his comments on an early version of this manuscript. The authors also thank V. Hilares and the Asociación para la Investigación y Desarrollo Integral (AIDER, Puerto Maldonado, Peru); V. Saldaña and Instituto de Investigaciones de la Amazonía Peruana (IIAP) for local field campaign support in Peru; E. Chavez and Noel Kempff Natural History Museum for local field campaign support in Bolivia; ICMBio, INPA/NAPPA/LBA COOMFLONA (Cooperativa mista da Flona Tapajós) and T. I. Bragança-Marituba for the research support.Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, Ψ50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters Ψ50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both Ψ50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.Publisher PDFPeer reviewe

    Non-structural carbohydrates mediate seasonal water stress across Amazon forests

    Get PDF
    Non-structural carbohydrates (NSC) are major substrates for plant metabolism and have been implicated in mediating drought-induced tree mortality. Despite their significance, NSC dynamics in tropical forests remain little studied. We present leaf and branch NSC data for 82 Amazon canopy tree species in six sites spanning a broad precipitation gradient. During the wet season, total NSC (NSCT) concentrations in both organs were remarkably similar across communities. However, NSCT and its soluble sugar (SS) and starch components varied much more across sites during the dry season. Notably, the proportion of leaf NSCT in the form of SS (SS:NSCT) increased greatly in the dry season in almost all species in the driest sites, implying an important role of SS in mediating water stress in these sites. This adjustment of leaf NSC balance was not observed in tree species less-adapted to water deficit, even under exceptionally dry conditions. Thus, leaf carbon metabolism may help to explain floristic sorting across water availability gradients in Amazonia and enable better prediction of forest responses to future climate change

    Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: The pan-Amazonian HT dataset (Ψ 50, Ψ dry and HSM50) and branch wood density per species per site, as well as forest dynamic and climate data per plot presented in this study are available as a ForestPlots.net data package at https://forestplots.net/data-packages/Tavares-et-al-2023. Basal area weighted mean LMA is shown in Supplementary Table 2. Species stem wood density data were obtained from Global Wood Density database65,66. Species WDA data were extracted from ref. 45.Code availability: The codes to recreate the main analyses and the main figures presented in this study are available as a ForestPlots.net data package at https://forestplots.net/data-packages/Tavares-et-al-2023.Tropical forests face increasing climate risk, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, Ψ 50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk, little is known about how these vary across Earth’s largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters Ψ 50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both Ψ 50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth–mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon, with strong implications for the Amazon carbon sink

    Implicit Cognitions and Self-Destructive Behaviour : Studies of Implicit Processes in Addiction and Suicide

    No full text
    Cette thèse a pour objectif de tester la fiabilité de résultats majeurs de psychologie montrant que des mesures implicites permettraient de prédire et de changer des comportements autodestructeurs. Cela semble particulièrement important dans le contexte de crise de confiance traversé actuellement par les sciences et plus particulièrement par la psychologie. À cette fin, nous avons mené trois études préenregistrées. Dans une première série d'études, nous avons répliqué les résultats de Houben, Havermans, et Wiers (2010) montrant qu'un conditionnement évaluatif permettrait de changer l'évaluation implicite de l'alcool ainsi que les consommations d'alcool (Houben, Havermans, et al., 2010). Notre première étude, une réplication conceptuelle, ne réplique que partiellement les effets originaux. Nous ne trouvons en effet pas de réduction des biais implicites envers l'alcool après un conditionnement évaluatif ; cependant, nous répliquons l'effet montrant une réduction des consommations d'alcool. Notre deuxième étude, une réplication exacte, ne réplique aucun des deux résultats originaux. Néanmoins, nous trouvons dans cette étude une réduction des consommations d'alcool, après un conditionnement évaluatif, chez les individus ayant une consommation à risque. Une deuxième série d'études visait ensuite à tester la fiabilité et le consensus de résultats montrant qu'un test d'association implicite permettrait de discriminer les individus suicidaires et de prédire les futures tentatives de suicide (Nock et al., 2010). Pour cela, nous avons réalisé une petite méta-analyse afin de tester s'il existe un consensus dans la littérature scientifique sur la validité prédictive des mesures implicites dans les comportements suicidaires. Cette méta-analyse montre une taille d'effet moyenne dans la discrimination et la prédiction des comportements suicidaires par les mesures implicites. Enfin, dans une dernière étude qui s'est étendue sur une période de trois ans, nous avons voulu réaliser une réplication exacte des effets de Nock et al. (2010). Les résultats répliquent partiellement ceux de l'étude originale. Dans notre étude, le test d'association implicite suicide ne discrimine pas les patients suicidaires des autres patients mais prédit bien les futures tentatives de suicide à six mois au-delà des facteurs de risque habituels. Les résultats présentés dans cette thèse démontrent que les mesures implicites joueraient un rôle dans la prédiction et la modification des comportements autodestructeurs. Les implications théoriques et cliniques sont discutées.This thesis aims to test the reliability of major psychological results showing that implicit measures could predict and change self-destructive behaviors. This is particularly important given the confidence crisis that science is currently experiencing, especially in the field of psychology. For that purpose, in a first series of studies, we replicated the results of Houben, Havermans, and Wiers (2010) suggesting that an evaluative conditioning could change the implicit evaluation of alcohol and reduce drinking behaviors. Our first study, a conceptual replication, partially replicated the original effects. In our study, evaluative conditioning did not change the implicit evaluation of alcohol. However, evaluative conditioning reduced drinking behaviors. Our second study, a direct replication, did not replicate the original effects. We did not find that fear conditioning changed the implicit evaluation of alcohol or drinking behaviors. Nevertheless, fear conditioning reduced hazardous drinker's drinking behavior. A second set of studies aimed to test the reliability of published results showing that implicit measures could discriminate and predict suicidal behaviors (Nock et al., 2010). We carried out a meta-analysis to test if there is a consensus in the scientific literature on the predictive validity of implicit measures in suicidal behaviors. This meta-analysis indicated a medium effect size of implicit measure in the discrimination and prediction of suicidal behaviors. Finally, our last study was a direct replication of Nock et al. (2010) results. This study was conducted over the 3 years of the PhD. Our study partially replicated original results. In our study, the suicide implicit association test did not discriminate suicidal patients from control patients. However, the suicide implicit association test prospectively predicted future suicide attempt at six months follow up beyond the other habitual risk factors. The results of our studies demonstrate that implicit measures can predict and change self-destructive behaviors. Theoretical and clinical implications are discussed
    corecore