388 research outputs found

    Abductor digiti minimi opponensplasty and flexor digitorum superficialis opposition transfer: What are the main indications? A literature review

    Get PDF
    Thumb hypoplasia is a rare deformity of the hand. Type II and IIIA are the main indications for opponensplasty, together with thumbs with a residual weak opposition after pollicization. Our study operates a review of the current literature to establish which opponensplasty technique is the most appropriate for each patient. We conducted a systematic search using PubMed, Embase, and Web of Science databases. The keywords used were “thumb hypoplasia,” AND “opponensplasty,” “abductor digiti minimi opponensplasty,” “thumb hypoplasia,” AND “abductor digiti minimi,” “opponensplasty,” AND “hypoplasia,” “flexor superficialis opponensplasty,” “flexor digitorum superficialis opponensplasty.” A minimum of 1 year of follow-up was required for inclusion. A total of 222 studies were recovered, of which only 9 articles satisfied our inclusion criteria. From the results obtained, the choice between abductor digiti minimi opponensplasty and flexor digitorum superficialis transfer should depend on the severity of the deformity and the main goal that should be achieved. Children with type IIIA hypoplasia characterized by more unstable joints should undergo flexor digitorum superficialis transfer to restore joint stability. On the contrary, when the instability is not of great concern, abductor digiti minimi opponensplasty, which aims at better defining the thenar eminence and restoring a better global hand function, should be preferred

    Precise measurements of the properties of the B-1(5721)(0,+) and B-2*(5747)(0,+) states and observation of B-+,B-0 pi(-,+) mass structures

    Get PDF
    Invariant mass distributions of B+π− and B0π+ combinations are investigated in order to study excited B mesons. The analysis is based on a data sample corresponding to 3.0 fb−1 of pp collision data, recorded by the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Precise measurements of the masses and widths of the B1(5721)0,+ and B2(5747)0,+ states are reported. Clear enhancements, particularly prominent at high pion transverse momentum, are seen over background in the mass range 5850-6000 MeV in both B+π− and B0π+ combinations. The structures are consistent with the presence of four excited B mesons, labelled BJ (5840)0,+ and BJ (5960)0,+, whose masses and widths are obtained under different hypotheses for their quantum numbers

    Measurement of the forward Z boson production cross-section in pp collisions at s=13\sqrt{s} = 13 TeV

    Get PDF
    A measurement of the production cross-section of Z bosons in pp collisions at s=13\sqrt{s} = 13 TeV is presented using dimuon and dielectron final states in LHCb data. The cross-section is measured for leptons with pseudorapidities in the range 2.0η4.52.0 \eta 4.5, transverse momenta pT20p_\text{T} 20 GeV and dilepton invariant mass in the range 60m()12060 m(\ell\ell) 120 GeV. The integrated cross-section from averaging the two final states is \begin{equation*}\sigma_{\text{Z}}^{\ell\ell} = 194.3 \pm 0.9 \pm 3.3 \pm 7.6\text{ pb,}\end{equation*} where the first uncertainty is statistical, the second is due to systematic effects, and the third is due to the luminosity determination. In addition, differential cross-sections are measured as functions of the Z boson rapidity, transverse momentum and the angular variable ϕη\phi^*_\eta

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    First observation and amplitude analysis of the B- -> D+K-pi(-) decay

    Get PDF
    The B-→D+K-π- decay is observed in a data sample corresponding to 3.0 fb-1 of pp collision data recorded by the LHCb experiment during 2011 and 2012. Its branching fraction is measured to be B(B-→D+K-π-)=(7.31±0.19±0.22±0.39)×10-5 where the uncertainties are statistical, systematic and from the branching fraction of the normalization channel B-→D+π-π-, respectively. An amplitude analysis of the resonant structure of the B-→D+K-π- decay is used to measure the contributions from quasi-two-body B-→D0∗(2400)0K-, B-→D2∗(2460)0K-, and B-→DJ∗(2760)0K- decays, as well as from nonresonant sources. The DJ∗(2760)0 resonance is determined to have spin 1

    A study of CP violation in B-+/- -> DK +/- and B-+/- -> D pi(+/-) decays with D -> (KSK +/-)-K-0 pi(-/+) final states

    Get PDF
    A first study of CP violation in the decay modes B±[KS0K±π]Dh±B^\pm\to [K^0_{\rm S} K^\pm \pi^\mp]_D h^\pm and B±[KS0Kπ±]Dh±B^\pm\to [K^0_{\rm S} K^\mp \pi^\pm]_D h^\pm, where hh labels a KK or π\pi meson and DD labels a D0D^0 or D0\overline{D}^0 meson, is performed. The analysis uses the LHCb data set collected in pppp collisions, corresponding to an integrated luminosity of 3 fb1^{-1}. The analysis is sensitive to the CP-violating CKM phase γ\gamma through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of γ\gamma using other decay modes

    Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state

    Get PDF
    A search for the rare decays Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions are measured to be B(Bs0π+πμ+μ)=(8.6±1.5(stat)±0.7(syst)±0.7(norm))×108\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0π+πμ+μ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×108\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0J/ψ(μ+μ)K(890)0(K+π)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0π+πμ+μ)=(8.6±1.5(stat)±0.7(syst)±0.7(norm))×108\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0π+πμ+μ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×108\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0J/ψ(μ+μ)K(890)0(K+π)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation

    Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -> p(p)over-bar

    Get PDF
    The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.25±0.67B)×103B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.25 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2.The production of the ηc(1S)\eta _c (1S) state in proton-proton collisions is probed via its decay to the ppp\overline{p} final state with the LHCb detector, in the rapidity range 2.06.5GeV/c2.0 6.5 \mathrm{{\,GeV/}{ c}} . The cross-section for prompt production of ηc(1S)\eta _c (1S) mesons relative to the prompt J/ψ{{ J}}/{\psi } cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.74\, \pm \,0.29\, \pm \, 0.28\, \pm \,0.18 _{{\mathcal{B}}} at a centre-of-mass energy s=7 TeV{\sqrt{s}} = 7 {~\mathrm{TeV}} using data corresponding to an integrated luminosity of 0.7 fb1^{-1} , and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{{\mathcal{B}}} at s=8 TeV{\sqrt{s}} = 8 {~\mathrm{TeV}} using 2.0 fb1^{-1} . The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta _c (1S) and J/ψ{{ J}}/{\psi } decays to the ppp\overline{p} final state. In addition, the inclusive branching fraction of b{b} -hadron decays into ηc(1S)\eta _c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.29±0.67B)×103{\mathcal{B}}( b {\rightarrow } \eta _c X ) = (4.88\, \pm \,0.64\, \pm \,0.29\, \pm \, 0.67 _{{\mathcal{B}}}) \times 10^{-3} , where the third uncertainty includes also the uncertainty on the J/ψ{{ J}}/{\psi } inclusive branching fraction from b{b} -hadron decays. The difference between the J/ψ{{ J}}/{\psi } and ηc(1S)\eta _c (1S) meson masses is determined to be 114.7±1.5±0.1MeV ⁣/c2114.7 \pm 1.5 \pm 0.1 {\mathrm {\,MeV\!/}c^2} .The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.29±0.67B)×103B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.29 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2
    corecore