43 research outputs found
Position Statement:Emerging genetic therapies for rare disorders
Emerging genetic therapies for rare disorders at high cost, cannot realistically address the global burden of disease. Stakeholders must develop new pathways to ensure safe, fair and sustainable provision of such therapies
Cultivation technology influences the occurrence of potato early blight (Alternaria solani) in an organic farming system
Abstract Nowadays, organically produced products have become more popular than ever and interest in them is still growing fast. The early blight causal pathogen Alternaria solani has not been considered a great threat to potato in northern climate conditions in the past and has not been routinely sprayed against. During our study early blight was evaluated in 2010 and 2011 on the plants of a potato cultivar 'Reet' in an organic farming experiment. In our study, both growing seasons were very favourable for early blight development. Significant differences between the two cultivation technologies were found (F 1,12 = 4.84, p = 0.048). In 2010, the area under disease progress curve (AUDPC) value was 303 on cover crop (CC) plots and 990 on CC + M (manure) plots that is three times higher, whereas in 2011, the AUDPC value was 967 on CC plots and 1195 on CC + M plots. Our results confirm that potato early blight has become a serious problem in North-East European organic potato fields and thus susceptible potato cultivars cannot be recommended for growing in an organic farming system. However, it is possible to influence the development severity of early blight by selecting the proper growing technology. Since, in the changing climate conditions and in susceptible cultivars, early blight is a potato disease that can cause early defoliation of plants and crop death, there is a need for resistant potato cultivars
Common data elements for clinical research in mitochondrial disease: a National Institute for Neurological Disorders and Stroke project
Objectives The common data elements (CDE) project was
developed by the National Institute of Neurological
Disorders and Stroke (NINDS) to provide clinical researchers
with tools to improve data quality and allow for harmonization
of data collected in different research studies. CDEs have been
created for several neurological diseases; the aim of this project
was to develop CDEs specifically curated for mitochondrial
disease (Mito) to enhance clinical research.
Methods Nine working groups (WGs), composed of international
mitochondrial disease experts, provided recommendations
for Mito clinical research. They initially reviewed
existing NINDS CDEs and instruments, and developed new
data elements or instruments when needed. Recommendations
were organized, internally reviewed by the Mito WGs, and
posted online for external public comment for a period of eight
weeks. The final version was again reviewed by all WGs and
the NINDS CDE team prior to posting for public use
Prevalence and architecture of de novo mutations in developmental disorders.
The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year
Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.
We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities
Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.
The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
Vulnerability to oxidative stress in vitro in pathophysiology of mitochondrial short-chain acyl-CoA dehydrogenase deficiency: response to antioxidants.
OBJECTIVE: To elucidate the pathophysiology of SCAD deficient patients who have a unique neurological phenotype, among fatty acid oxidation disorders, with early developmental delay, CNS malformations, intractable seizures, myopathy and clinical signs suggesting oxidative stress. METHODS: We studied skin fibroblast cultures from patients homozygous for ACADS common variant c.625G>A (n = 10), compound heterozygous for c.625G>A/c.319C>T (n = 3) or homozygous for pathogenic c.319C>T (n = 2) and c.1138C>T (n = 2) mutations compared to fibroblasts from patients with carnitine palmitoyltransferase 2 (CPT2) (n = 5), mitochondrial trifunctional protein (MTP)/long-chain L-3-hydroxyacyl-CoA dehydrogenase (LCHAD) (n = 7), and medium-chain acyl-CoA dehydrogenase (MCAD) deficiencies (n = 4) and normal controls (n = 9). All were exposed to 50 µM menadione at 37°C. Additional conditions included exposure to 39°C and/or hypoglycemia. Time to 100% cell death was confirmed with trypan blue dye exclusion. Experiments were repeated with antioxidants (Vitamins C and E or N-acetylcysteine), Bezafibrate or glucose and temperature rescue. RESULTS: The most significant risk factor for vulnerability to menadione-induced oxidative stress was the presence of a FAO defect. SCADD fibroblasts were the most vulnerable compared to other FAO disorders and controls, and were similarly affected, independent of genotype. Cell death was exacerbated by hyperthermia and/or hypoglycemia. Hyperthermia was a more significant independent risk factor than hypoglycemia. Rescue significantly prolonged survival. Incubation with antioxidants and Bezafibrate significantly increased viability of SCADD fibroblasts. INTERPRETATION: Vulnerability to oxidative stress likely contributes to neurotoxicity of SCADD regardless of ACADS genotype and is significantly exacerbated by hyperthermia. We recommend rigorous temperature control in SCADD patients during acute illness. Antioxidants and Bezafibrate may also prove instrumental in their management