147 research outputs found

    NeuronAlg: An Innovative Neuronal Computational Model for Immunofluorescence Image Segmentation

    Get PDF
    Background: Image analysis applications in digital pathology include various methods for segmenting regions of interest. Their identification is one of the most complex steps and therefore of great interest for the study of robust methods that do not necessarily rely on a machine learning (ML) approach. Method: A fully automatic and optimized segmentation process for different datasets is a prerequisite for classifying and diagnosing indirect immunofluorescence (IIF) raw data. This study describes a deterministic computational neuroscience approach for identifying cells and nuclei. It is very different from the conventional neural network approaches but has an equivalent quantitative and qualitative performance, and it is also robust against adversative noise. The method is robust, based on formally correct functions, and does not suffer from having to be tuned on specific data sets. Results: This work demonstrates the robustness of the method against variability of parameters, such as image size, mode, and signal-to-noise ratio. We validated the method on three datasets (Neuroblastoma, NucleusSegData, and ISBI 2009 Dataset) using images annotated by independent medical doctors. Conclusions: The definition of deterministic and formally correct methods, from a functional and structural point of view, guarantees the achievement of optimized and functionally correct results. The excellent performance of our deterministic method (NeuronalAlg) in segmenting cells and nuclei from fluorescence images was measured with quantitative indicators and compared with those achieved by three published ML approaches

    The role of network connectivity on epileptiform activity

    Get PDF
    A number of potentially important mechanisms have been identified as key players to generate epileptiform activity, such as genetic mutations, activity-dependent alteration of synaptic functions, and functional network reorganization at the macroscopic level. Here we study how network connectivity at cellular level can affect the onset of epileptiform activity, using computational model networks with different wiring properties. The model suggests that networks connected as in real brain circuits are more resistant to generate seizure-like activity. The results suggest new experimentally testable predictions on the cellular network connectivity in epileptic individuals, and highlight the importance of using the appropriate network connectivity to investigate epileptiform activity with computational models

    A New Dissimilarity Measure for Clustering Seismic Signals

    Get PDF
    Hypocenter and focal mechanism of an earthquake can be determined by the analysis of signals, named waveforms, related to the wave field produced and recorded by a seismic network. Assuming that waveform similarity implies the similarity of focal parameters, the analysis of those signals characterized by very similar shapes can be used to give important details about the physical phenomena which have generated an earthquake. Recent works have shown the effectiveness of cross-correlation and/or cross-spectral dissimilarities to identify clusters of seismic events. In this work we propose a new dissimilarity measure between seismic signals whose reliability has been tested on real seismic data by computing external and internal validation indices on the obtained clustering. Results show its superior quality in terms of cluster homogeneity and computational time with respect to the largely adopted cross correlation dissimilarit

    Kinetics and functional consequences of BK channels activation by N-type Ca2+ channels in the dendrite of mouse neocortical layer-5 pyramidal neurons

    Get PDF
    The back-propagation of an action potential (AP) from the axon/soma to the dendrites plays a central role in dendritic integration. This process involves an intricate orchestration of various ion channels, but a comprehensive understanding of the contribution of each channel type remains elusive. In this study, we leverage ultrafast membrane potential recordings (Vm) and Ca2+ imaging techniques to shed light on the involvement of N-type voltage-gated Ca2+ channels (VGCCs) in layer-5 neocortical pyramidal neurons’ apical dendrites. We found a selective interaction between N-type VGCCs and large-conductance Ca2+-activated K+ channels (BK CAKCs). Remarkably, we observe that BK CAKCs are activated within a mere 500 μs after the AP peak, preceding the peak of the Ca2+ current triggered by the AP. Consequently, when N-type VGCCs are inhibited, the early broadening of the AP shape amplifies the activity of other VGCCs, leading to an augmented total Ca2+ influx. A NEURON model, constructed to replicate and support these experimental results, reveals the critical coupling between N-type and BK channels. This study not only redefines the conventional role of N-type VGCCs as primarily involved in presynaptic neurotransmitter release but also establishes their distinct and essential function as activators of BK CAKCs in neuronal dendrites. Furthermore, our results provide original functional validation of a physical interaction between Ca2+ and K+ channels, elucidated through ultrafast kinetic reconstruction. This insight enhances our understanding of the intricate mechanisms governing neuronal signaling and may have far-reaching implications in the field

    A REST-based framework to support non-invasive and early coeliac disease diagnosis

    Get PDF
    The health sector has traditionally been one of the early adopters of databases, from the most simple Electronic Health Record (formerly Computer-Based Patient Record) systems in use in general practice, hospitals and intensive care units to big data, multidata based systems used to support diagnosis and care decisions. In this paper we present a framework to support non-invasive and early diagnosis of coeliac disease. The proposed framework makes use of well-known technologies and techniques, both hardware and software, put together in a novel way. The main goals of our framework are: (1) providing users with a reliable and fast repository of a large amount of data; (2) to make such repository accessible by means of a suitable API in multiple modes, such as intuitive web-based or mobile visual interfaces; (3) to allow for data processing and analysis, as a basis for decision support systems

    Operations of and Future Plans for the Pierre Auger Observatory

    Full text link
    Technical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200

    Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    Get PDF
    We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10^18 eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/- 0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.Comment: Accepted for publication by PR

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
    corecore