539 research outputs found

    Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: A trait-based predictive framework

    Get PDF
    Anthropogenic nitrogen (N) deposition is exposing plants and their arbuscular mycorrhizal fungi (AMFs) to elevated N availability, often leading to shifts in communities of AMF. However, physiological trade-offs among AMF taxa in their response to N enrichment vs the ability to acquire other soil nutrients could have negative effects on plant and ecosystem productivity. It follows that information on the functional traits of AMF taxa can be used to generate predictions of their potential role in mediating ecosystem responses to N enrichment. Arbuscular mycorrhizal fungi taxa that produce extensive networks of external hyphae should forage for N and phosphorus (P) more effectively, but these services incur greater carbon (C) costs to the plant. If N enrichment ameliorates plant nutrient limitation, then plants may reduce C available for AMF, which in turn could eliminate AMF taxa with large extensive external hyphae from the soil community. As a result, the remaining AMF taxa may confer less P benefit to their host plants. Using a synthesis of data from the literature, we found that the ability of a taxon to persist in the face of increasing soil N availability was particularly high in isolates from the genus Glomus, but especially low among the Gigasporaceae. Across AMF genera, our data support the prediction that AMF with a tolerance for high soil N may confer a lower P benefit to their host plant. Relationships between high N tolerance and production of external hyphae were mixed. Synthesis. If the relationship between N tolerance and plant P benefit is widespread, then shifts in arbuscular mycorrhizal fungi communities associated with N deposition could have negative consequences for the ability of plants to acquire P and possibly other nutrients via a mycorrhizal pathway. Based on this relationship, we predict that arbuscular mycorrhizal fungi responses could constrain net primary productivity in P-limited ecosystems exposed to N enrichment. This prediction could be tested in future empirical and modelling studies

    Ectomycorrhizal fungal communities are dominated by mammalian dispersed truffle-like taxa in north-east Australian woodlands

    Get PDF
    Mycorrhizal fungi are very diverse, including those that produce truffle-like fruiting bodies. Truffle-like fungi are hypogeous and sequestrate (produced below-ground, with an enclosed hymenophore) and rely on animal consumption, mainly by mammals, for spore dispersal. This dependence links mycophagous mammals to mycorrhizal diversity and, assuming truffle-like fungi are important components of mycorrhizal communities, to plant nutrient cycling and ecosystem health. These links are largely untested as currently little is known about mycorrhizal fungal community structure and its dependence on mycophagous mammals. We quantified the mycorrhizal fungal community in the north-east Australian woodland, including the portion interacting with ten species of mycophagous mammals. The study area is core habitat of an endangered fungal specialist marsupial, Bettongia tropica, and as such provides baseline data on mycorrhizal fungi-mammal interactions in an area with no known mammal declines. We examined the mycorrhizal fungi in root and soil samples via high-throughput sequencing and compared the observed taxa to those dispersed by mycophagous mammals at the same locations. We found that the dominant root-associating ectomycorrhizal fungal taxa (> 90% sequence abundance) included the truffle-like taxa Mesophellia, Hysterangium and Chondrogaster. These same taxa were also present in mycophagous mammalian diets, with Mesophellia often dominating. Altogether, 88% of truffle-like taxa from root samples were shared with the fungal specialist diet and 52% with diets from generalist mammals. Our data suggest that changes in mammal communities, particularly the loss of fungal specialists, could, over time, induce reductions to truffle-like fungal diversity, causing ectomycorrhizal fungal communities to shift with unknown impacts on plant and ecosystem health

    Detection of signal recognition particle (SRP) RNAs in the nuclear ribosomal internal transcribed spacer 1 (ITS1) of three lineages of ectomycorrhizal fungi (Agaricomycetes, Basidiomycota)

    Get PDF
    During a routine scan for Signal Recognition Particle (SRP) RNAs in eukaryotic sequences, we surprisingly found in silico evidence in GenBank for a 265-base long SRP RNA sequence in the ITS1 region of a total of 11 fully identified species in three ectomycorrhizal genera of the Basidiomycota (Fungi): Astraeus, Russula, and Lactarius. To rule out sequence artifacts, one specimen from a species indicated to have the SRP RNA-containing ITS region in each of these genera was ordered and re-sequenced. Sequences identical to the corresponding GenBank entries were recovered, or in the case of a non-original but conspecific specimen differed by three bases, showing that these species indeed have an SRP RNA sequence incorporated into their ITS1 region. Other than the ribosomal genes, this is the first known case of non-coding RNAs in the eukaryotic ITS region, and it may assist in the examination of other types of insertions in fungal genomes.RHN acknowledges financial support from FORMAS (215-2011- 498) and from Stiftelsen Olle Engkvist Byggmästare. MPM was partially supported by Plan Nacional I+D+i project CGL2012-35559. CW acknowledges a Marie Skłodowska-Curie post doc grant (660122, CRYPTRANS)Peer reviewe

    Mycorrhizal tree impacts on topsoil biogeochemical properties in tropical forests

    Get PDF
    In tropical regions, the patterns of carbon (C) and nutrient properties among ecosystems dominated by distinct mycorrhizal associations are unknown. We aim to reveal whether the dynamics differ and the ecological drivers and ecosystem functioning implications of such differences. Based on a dataset of 97 tropical forest sites, we related EcM trees abundance (as a proxy for the transition from AM to EcM trees dominance) to different topsoil properties, climatic conditions and microbial abundance proxies through Generalized Additive Models. Higher abundances of EcM trees were correlated with higher topsoil concentrations of total nitrogen and C, extractable phosphorus and potassium, delta C-13, mean annual temperature, precipitation, microbial (bacterial and fungal) biomass and the relative abundance of saprotrophic fungi. Synthesis. Our results reveal consistent differences in carbon and nutrient content between arbuscular mycorrhizal (AM-) and EcM-dominated vegetation across the tropical biome, pointing to lower soil fertility and lower rates of C and nutrient transformation processes in EcM-dominated forests. These patterns associate with lower topsoil C accumulation when compared to AM vegetation, which contrasts with patterns reported for temperate forests. We suggest that different mechanisms of soil organic matter accumulation explain the contrasting impacts of EcM dominance on topsoil properties of temperate and tropical biomes. Global vegetation and C models should account for the contrasting impacts of distinct mycorrhizal vegetation in different climatic zones.Environmental Biolog

    Tree diversity and species identity effects on soil fungi, protists and animals are context dependent

    Get PDF
    Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se

    High-level classification of the Fungi and a tool for evolutionary ecological analyses

    Get PDF
    High-throughput sequencing studies generate vast amounts of taxonomic data. Evolutionary ecological hypotheses of the recovered taxa and Species Hypotheses are difficult to test due to problems with alignments and the lack of a phylogenetic backbone. We propose an updated phylum-and class-level fungal classification accounting for monophyly and divergence time so that the main taxonomic ranks are more informative. Based on phylogenies and divergence time estimates, we adopt phylum rank to Aphelidiomycota, Basidiobolomycota, Calcarisporiellomycota, Glomeromycota, Entomophthoromycota, Entorrhizomycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota and Olpidiomycota. We accept nine subkingdoms to accommodate these 18 phyla. We consider the kingdom Nucleariae (phyla Nuclearida and Fonticulida) as a sister group to the Fungi. We also introduce a perl script and a newick-formatted classification backbone for assigning Species Hypotheses into a hierarchical taxonomic framework, using this or any other classification system. We provide an example of testing evolutionary ecological hypotheses based on a global soil fungal data set.Peer reviewe

    The abundance of arbuscular mycorrhiza in soils is linked to the total length of roots colonized at ecosystem level

    Get PDF
    Arbuscular mycorrhizal fungi (AMF) strongly affect ecosystem functioning. To understand and quantify the mechanisms of this control, knowledge about the relationship between the actual abundance and community composition of AMF in the soil and in plant roots is needed. We collected soil and root samples in a natural dune grassland to test whether, across a plant community, the abundance of AMF in host roots (measured as the total length of roots colonized) is related to soil AMF abundance (using the neutral lipid fatty acids (NLFA) 16:1ω5 as proxy). Next-generation sequencing was used to explore the role of community composition in abundance patterns. We found a strong positive relationship between the total length of roots colonized by AMF and the amount of NLFA 16:1ω5 in the soil. We provide the first field-based evidence of proportional biomass allocation between intra-and extraradical AMF mycelium, at ecosystem level. We suggest that this phenomenon is made possible by compensatory colonization strategies of individual fungal species. Finally, our findings open the possibility of using AMF total root colonization as a proxy for soil AMF abundances, aiding further exploration of the AMF impacts on ecosystems functioning.Environmental Biolog

    Outline of fungi and fungus-like taxa

    Get PDF
    This article provides an outline of the classification of the kingdom Fungi (including fossil fungi. i.e. dispersed spores, mycelia, sporophores, mycorrhizas). We treat 19 phyla of fungi. These are Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. The placement of all fungal genera is provided at the class-, order- and family-level. The described number of species per genus is also given. Notes are provided of taxa for which recent changes or disagreements have been presented. Fungus-like taxa that were traditionally treated as fungi are also incorporated in this outline (i.e. Eumycetozoa, Dictyosteliomycetes, Ceratiomyxomycetes and Myxomycetes). Four new taxa are introduced: Amblyosporida ord. nov. Neopereziida ord. nov. and Ovavesiculida ord. nov. in Rozellomycota, and Protosporangiaceae fam. nov. in Dictyosteliomycetes. Two different classifications (in outline section and in discussion) are provided for Glomeromycota and Leotiomycetes based on recent studies. The phylogenetic reconstruction of a four-gene dataset (18S and 28S rRNA, RPB1, RPB2) of 433 taxa is presented, including all currently described orders of fungi.Fil: Wijayawardene, N. N.. Qujing Normal University; ChinaFil: Hyde, K. D.. Mae Fah Luang University; TailandiaFil: Al-Ani, L. K. T.. University of Baghdad; IraqFil: Tedersoo, L.. University of Tartu; EstoniaFil: Haelewaters, D.. University of South Bohemia; República Checa. Purdue University; Estados Unidos. Universidad Autónoma de Chiriquí; PanamáFil: Becerra, Alejandra Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Schnittler, M.. Ernst Moritz Arndt University Greifswald; AlemaniaFil: Shchepin, O. N.. The Komarov Botanical Institute of the Russian Academy of Sciences; RusiaFil: Novozhilov, Y. K.. The Komarov Botanical Institute of the Russian Academy of Sciences; RusiaFil: Silva-Filho, A.G. S.. Universidade Federal do Rio Grande do Norte; BrasilFil: Gentekaki, E.. Mae Fah Luang University; TailandiaFil: Liu, P.. Jilin Agricultural University; ChinaFil: Cavender, J. C.. Ohio University; Estados UnidosFil: Kang, Y.. Guizhou Medical University; ChinaFil: Mohammad, S.. Iranian Research Organization for Science and Technology; IránFil: Zhang, L. F.. Qujing Normal University; ChinaFil: Xu, R. F.. Qujing Normal University; ChinaFil: Li, Y. M.. Qujing Normal University; ChinaFil: Dayarathne, M. C.. Guizhou University; ChinaFil: Ekanayaka, A. H.. Mae Fah Luang University; TailandiaFil: Wen, T. C.. Guizhou University; ChinaFil: Deng, C. Y.. Guizhou Academy of Science; ChinaFil: Pereira, O. L.. Universidade Federal de Viçosa; BrasilFil: Navathe, S.. Agharkar Research Institute; IndiaFil: Hawksworth, D. L.. The Natural History Museum; Reino UnidoFil: Fan, X. L.. Beijing Forestry University; ChinaFil: Dissanayake, L. S.. Guizhou University; ChinaFil: Kuhnert, E.. Leibniz University Hannover; AlemaniaFil: Grossart, H. P.. Leibnitz Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Thines, M.. Senckenberg Biodiversity and Climate Research Centre; Alemani

    Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi

    Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest

    Get PDF
    Mycorrhizal species richness and host ranges were investigated in mixed deciduous stands composed of Fagus sylvatica, Tilia spp., Carpinus betulus, Acer spp., and Fraxinus excelsior. Acer and Fraxinus were colonized by arbuscular mycorrhizas and contributed 5% to total stand mycorrhizal fungal species richness. Tilia hosted similar and Carpinus half the number of ectomycorrhizal (EM) fungal taxa compared with Fagus (75 putative taxa). The relative abundance of the host tree the EM fungal richness decreased in the order Fagus > Tilia >> Carpinus. After correction for similar sampling intensities, EM fungal species richness of Carpinus was still about 30–40% lower than that of Fagus and Tilia. About 10% of the mycorrhizal species were shared among the EM forming trees; 29% were associated with two host tree species and 61% with only one of the hosts. The latter group consisted mainly of rare EM fungal species colonizing about 20% of the root tips and included known specialists but also putative non-host associations such as conifer or shrub mycorrhizas. Our data indicate that EM fungal species richness was associated with tree identity and suggest that Fagus secures EM fungal diversity in an ecosystem since it shared more common EM fungi with Tilia and Carpinus than the latter two among each other
    • …
    corecore