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Abstract

Mycorrhizal fungi are very diverse, including those that produce truffle-like fruiting bodies. Truffle-like fungi are hypogeous and
sequestrate (produced below-ground, with an enclosed hymenophore) and rely on animal consumption, mainly by mammals, for
spore dispersal. This dependence links mycophagous mammals to mycorrhizal diversity and, assuming truffle-like fungi are
important components of mycorrhizal communities, to plant nutrient cycling and ecosystem health. These links are largely
untested as currently little is known about mycorrhizal fungal community structure and its dependence on mycophagous
mammals. We quantified the mycorrhizal fungal community in the north-east Australian woodland, including the portion
interacting with ten species of mycophagous mammals. The study area is core habitat of an endangered fungal specialist
marsupial, Bettongia tropica, and as such provides baseline data on mycorrhizal fungi-mammal interactions in an area with no
known mammal declines. We examined the mycorrhizal fungi in root and soil samples via high-throughput sequencing and
compared the observed taxa to those dispersed by mycophagous mammals at the same locations. We found that the dominant
root-associating ectomycorrhizal fungal taxa (>90% sequence abundance) included the truffle-like taxa Mesophellia,
Hysterangium and Chondrogaster. These same taxa were also present in mycophagous mammalian diets, with Mesophellia
often dominating. Altogether, 88% of truffle-like taxa from root samples were shared with the fungal specialist diet and 52% with
diets from generalist mammals. Our data suggest that changes in mammal communities, particularly the loss of fungal specialists,
could, over time, induce reductions to truffle-like fungal diversity, causing ectomycorrhizal fungal communities to shift with
unknown impacts on plant and ecosystem health.
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Introduction

Hypogeous, sequestrate (truffle-like) mycorrhizal fungi
are an important component of forest ecosystems and they
rely on animals, particularly mammals, for their spore
dispersal (Claridge and May 1994). This implies that
truffle-like fungal diversity is likely linked to mammal
diversity (Vernes 2007). Disruption to complex ecological
networks, such as this mammal-fungi-plant interaction,
can cause loss of biodiversity. For example, it is logical
to assume that reduced spore dispersal via loss of mam-
mal abundance and diversity would reduce gene flow
among truffle-like populations, resulting in undocumented
impacts on truffle-like fungal community structure and
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potential species extinctions. Loss of truffle-like species
diversity may in turn alter mycorrhizal communities, po-
tentially impacting fungi-plant interactions.
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Mammals are also thought to play a pivotal role in plant-
mycorrhiza symbioses, and by extension, plant productivity,
diversity and ecosystem health (Maser et al. 1978; Malajczuk
et al. 1987; Johnson 1996; Vernes 2007). Such a hypothesis
assumes that truffle-like taxa are important components of
functioning mycorrhizal communities and that the higher the
proportion of truffle-like taxa within the overall mycorrhizal
community, either in terms of relative abundance or diversity,
the higher the potential influence that mammalian spore dis-
persal has on the structuring of mycorrhizal and plant commu-
nities. Yet, these assumed linkages remain largely untested.

To understand the strength of the relationship between my-
corrhizal communities and mycophagous mammals, first we
must understand how important truffle-like taxa are to function-
ing mycorrhizal communities. Few studies have identified the
fruiting habits of the various components of the Australian my-
corrhizal fungal community (or presented data with enough
resolution that this can be inferred post hoc; Online Resource
1, Table S1). In three different studies of ectomycorrhizal
(ECM) fungal sporocarps in Australia (Reddell et al. 1999;
Lu et al. 1999; Adams et al. 2006), between 18 and 27% of
taxa found were truffle-like (reported as hypogeous). However,
these three surveys are difficult to compare in terms of the
richness of hypogeous versus epigeous species because the
same methodology was not used for both groups.

It is also important to make the distinction between ECM
and arbuscular mycorrhizal (AM) communities as the relative
diversity of truftle-like species are quite different in these
groups as are their distribution, ecology and interactions with
host plants. AM fungi associate with >80% of global plant
diversity and occur in almost every ecosystem where plants
are present, while ECM associate with a much smaller propor-
tion (Brundrett 2009). However, ECM trees can dominate
forests in terms of biomass (Reddell et al. 1999). The diversity
of truffle-like (sporocarpic) AM fungi is much lower com-
pared to ECM fungi; at least two AM genera contain truffle-
like species (Glomus and Acaulospora; Goto and Maia 2005)
while thousands of species of ECM truftle-like fungi are with-
in Basidiomycota, Ascomycota and Zygomycota (Bougher
and Lebel 2001; Trappe et al. 2009). Therefore, any influence
that mammals may have on mycorrhizal communities will
likely depend on the differences between these groups.

To our knowledge, only one study has quantified the ECM
community on natural forest plant host roots and compared this
to mycophagous mammalian diets. Izzo et al. (2005) sampled
roots from subtropical North America and found at least 21% of
taxa were truffle-like and between 25 and 40% of ECM dry root
biomass were truffle-like taxa (reported as hypogeous).
However, this study was limited to Sanger sequencing of
DNA samples from mammalian scats and consequently detect-
ed only three truffle-like taxa in mammalian diets. Modern
high-throughput sequencing technologies that amplify and se-
quence DNA from complex communities provide the necessary
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resolution to examine fungal communities from environmental
samples like roots, scats and soil (Lindahl et al. 2013).

Our aim was to address the knowledge gap in the structure
and relative proportion of mycorrhizal communities, particu-
larly the truffle-like communities that are interacting with my-
cophagous mammals. Using high-throughput sequencing
(Illumina MiSeq), we compared the mycorrhizal fungal com-
munities (concentrating on ECM fungi) across three sample
types including plant roots, soil and scats from mycophagous
mammals. We compared our results to reference ITS2 se-
quences of truffle-like morpho-species collected and
characterised from an extensive survey undertaken at one of
our sampling sites (Abell-Davis 2008). We collected roots,
soil and mammalian scat samples within the habitat of a fungal
specialist (the northern bettong; Bettongia tropica) and other
mycophagous mammals as this provides a baseline measure-
ment of the interaction between root-associating mycorrhizal
fungi and mycophagous mammals where limited known loss
of mammal diversity has occurred.

Methods
Field sampling

Sampling was carried out on the Lamb Range in North
Queensland in Australia at Davies Creek National Park
(17°1'23.28"S, 145°34'55.71"E; elevation 600—730 m) in
the late dry season (November to December) in 2014.
Additional sampling was carried out at two locations in the
early wet season (February to March): Danbulla National Park
near Tinaroo Dam (17°9'50.30"S, 145°32'11.56"E; elevation
630-780 m) and Davies Creek in 2015. Six plots (12 x 20 m)
at each site were established at least 500 m apart around the
animal trapping grid (as used in Nuske et al. 2018) for the
collection of soil and root samples. The dominant and puta-
tively ectomycorrhizal tree species were Fucalyptus crebra,
E. tindaliae, E. mediocris, Corymbia intermedia,
Allocasuarina littoralis, Al torulosa and Acacia flavescens.
Soil was collected from 40 cores (0—10 cm deep, 5 cm di-
ameter) per plot. The corers were carefully cleaned with 70%
ethanol between plots. Half of the plot (6 X 20 m) was also used
to collect putative ECM root-associated taxa by raking the top
10 cm of soil for 60 person-minutes and collecting fine roots.
Because the soil was often too compacted and contained large
rocks, we were not able to trace fine roots back to the potential
host plants. Instead, we collected all fine root material found.
When possible, grass roots were eliminated from individual
samples by tracing back to the grass plant. Preliminary work
also suggested that a higher volume of roots was collected with
this more targeted approach compared to sieving roots from soil
cores. A high volume of root tip material was necessary to
obtain three DNA extraction subsamples per plot (3 x0. 25 g
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of wet weight root tips, see below). Soil and roots were frozen
(—4 °C) within 24 h of collection and placed into —20 °C as
soon as possible (up to 4 days).

Fungal diets of mammals were examined by collecting
scat samples from trapped individuals. Trapping and animal
handling protocols were as outlined in Nuske et al. (2018).
Briefly, medium-sized and small mammals trapped for four
consecutive nights each, at two locations and two seasons.
We identified mammals according to Van Dyck et al.
(2013). We marked each individual by either removing a
small patch of hair with scissors at the base of the tail or
microchipping (B. tropica only; Minichips, Micro Products
Australia, Canning Vale, WA or ISO FDX-B Microchips,
OzMicrochips, Peakhurst, NSW). Scats were collected from
the bottom of Elliot traps or from plastic placed under each
cage trap. All traps and plastic were initially cleaned with
70% ethanol and then re-cleaned if an animal was caught.
Scats were stored on ice or in a portable fridge (4 °C) in the
field and transferred to —20 °C as soon as possible (within
4 days). Each animal was handled according to James Cook
University animal ethical guidelines (Approved ethics ap-
plication A2044).

Laboratory

Roots were cleaned of excess soil in reverse osmosis water.
Fine roots were examined under a dissecting microscope. For
each cluster of fine roots collected within a plot, the same
volume of root tips of each mycorrhizal morphotype were
placed into three subsamples (0. 25 g) for DNA extraction.
We did not attempt to verify the colonisation of each
ectomycorrhizal morphotype to maintain efficient processing.

Therefore, we consider the mycorrhizal community from root
samples to be ‘root-associated’. These taxa are more likely to
represent functioning mycorrhizal fungi (i.e. those taxa
colonised and interacting with plants) compared to that se-
quenced from soil samples. For soil samples, each of the 40
soil cores per plot were homogenised and pooled. Then three
subsamples of fine powdered soil were taken per plot for DNA
extraction (0.25 g). We only used scats from the first capture
of an individual per trapping session. Each boluse of scat was
broken in half and a small sample of faecal material removed
from the inside with sterile forceps. Samples were
homogenised and 0.25 g was taken for DNA extraction.
DNA extraction, PCR, sequencing protocols and bioinfor-
matics were processed as in Nuske et al. (2018). Briefly, DNA
was extracted using PowerLyser PowerSoil DNA Isolation kit
(Mo Bio, Carlsbad, CA USA) following manufacturer’s in-
structions, except that the samples were lysed using a Qiagen
Tissue Lyser for 2 x 30 s at 30 Hz, swapping the position of
the samples between runs. DNA was amplified with ITS3-
Mix1-5 (5"CTAGACTCGTCANCGATGAAGAACGYRG-
3") and barcoded ITS4ngs (5'-TCCTSCGCTTATTG
ATATGC-3') primers (Tedersoo et al. 2014). The primers were
tagged with 10—11 base unique molecular identifiers (MIDs)
to later distinguish samples with sequencing runs
(Online Resource 1, Table S1). We used negative (for DNA
extraction and PCR) and positive controls (PCR) throughout
the experiment. Normalised amplicons were subjected to liga-
tion of Illumina adaptors using the TruSeq DNA PCR-free HT
Sample Prep kit (Illumina Inc., San Diego, CA, USA). All
samples were sequenced using Illumina MiSeq 2 x 300
paired-end technology. Raw Illumina data is deposited in
Sequence Read Archive (SRA; bioproject SRP150847).
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Bioinformatics were performed using PipeCraft (v1.0; Anslan
et al. 2017) as per Nuske et al. (2018). Representative se-
quences for each operational taxonomic unit (OTU, clustered
with CD-HIT at 97% similarity threshold, v4.6; Li and Godzik
2006) were chosen using the mothur ‘abundance’ method and
compared against UNITE (v7.0), GenBank ITS and our local
truffle-like fungal database (Nuske et al. 2018) to obtain tax-
onomic affiliation using BLASTn (Camacho et al. 2009).
Taxonomic groups were assigned to functional categories
using FUNGuild (v1.0; Nguyen et al. 2015a). All
Glomeromycota taxa were assigned as arbuscular
mycorrhizal.

Statistics

OTU subsetting and statistics were performed using the
‘phyloseq’ package (McMurdie and Holmes 2013) in R (R
Core Team 2012). Altogether, six samples were removed from
further analyses, because these comprised <500 filtered se-
quences. The fungal dataset was examined at three broad
levels: at the whole OTU community level, only examining
the mycorrhizal OTUs (8.4% of all taxa) and only examining
truffle-like taxa (9.3% of mycorrhizal taxa). The mycorrhizal
subset of the data included only taxa that were assigned as
‘highly probable’ and ‘probable’ from the FUNGuild output
(Nguyen et al. 2015b). Functional guilds are assigned to ECM
status by FUNGuild based on genera, with the exception of
Russulaceae. Russulaceae is also one of the most OTU-rich
families in this dataset; therefore, when comparing mycorrhi-
zal taxa (e.g. as relative richness of mycorrhizal families),
Russulaceae are disproportionally over-represented. To make
sure ECM taxa were evenly represented at the genus level,
ECM OTUs assigned to family level, Russulaceae, were ex-
cluded from analyses (note: ECM OTUs assigned to genus
and species level within Russulaceae, for example Russula,
were retained). Identified truffle-like taxa are listed in
Online Resource 2.

The three subsamples per soil or root sample were pooled
computationally by mean sequence abundance per OTU as
this likely gives the best estimate of richness (Song et al.
2015). To estimate the accumulation of OTUs per sample,
we created rarefaction OTU accumulation curves for each
sample type with mycorrhizal and truffle OTU data using
the “ggrare” function (richness.R, phyloseq extensions;
https:// github.com/mahendra-mariadassou/phyloseq-
extended with added ggplot2 graphics).

We compared mycorrhizal communities between sample
types by tabulating the number of OTUs that were shared
and unshared (using ‘limma’ and ‘venneuler’ packages in
R). We ranked OTUs according to their relative abundance
per sample (based on sequence count) and considered the
‘dominant’ portion of the community to be the highest relative
abundance that collectively accounted for >90% of the
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relative abundance. The dominant portion accounted for ap-
proximately 25% of the taxa present.

Results
Richness

Soil samples were more OTU-rich than root samples, and both
were more OTU-rich than scat samples (6689, 3226 and 2932
OTUs, respectively). There were a total of 9358 filtered OTUs
across all samples. Most were not assigned to a functional
guild (7508 OTUs) by FUNGuild. Of those that were, most
were symbiotrophic (805 OTUs, including 344 ECM OTUs
and 428 AM OTUs) followed by saprotrophic (754 OTUs).
For mycorrhizal OTUs, at equivalent read count, the OTU
richness of scats was ~60% of the root-associating taxa
(Fig. 1a). We detected a higher truffle-like OTU richness in
scat samples than in root or soil samples (Fig. 1b).

Soil

Glomeraceae 12%,
Inocybaceae 5%

otrlchacea %
Paraéf( meraceae

Gigasporaceae 4%

Cortinariaceae 5%

Ambisporaceae 2%
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0,
Russulaceae 8% Acaulosporaceae 4%

lomeromycota 45%

Roots

Gigasporaceae 4%
Cortinariaceae 13%

Glomeraceae 14%

Hysterangiaceae 4%

Inocybaceae 4% Ambisporaceae 3%

] Amanitaceae 4%
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Myxotrichaceae 5%

Russulaceae 6%

Sclerodermataceae 2% Glomeromycota 32%

Scat

Inocy?@é%%ﬁp/facea 4%

2%
Iversisporaceae 4%
Cortinariaceae 4%

Mesophelliaceae 35% Boletaceae 5%

Glomeromycota 6%

Tuberaceae 3%

Myxotrichaceae 3% Russulaceae 19%

Fig. 2 Relative OTU richness of mycorrhizal families in different
samples (soil, roots and scats). Only taxa representing greater than 1%
of the total OTU richness are shown for clarity
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Both soil and root samples had AM fungi
(Glomeromycota, Glomeraceae and Gigasporaceae) as the
most OTU-rich mycorrhizal taxa. However, they made up <
13% of the taxa richness in the mammalian scat samples
(Fig. 2, including Diversisporaceae) and constituted < 0.01%
of the relative abundance for all samples (Fig. 3). The truffle-
like family Mesophelliaceae was the most OTU-rich and
highest relative abundance mycorrhizal taxon in mammalian
scat samples (Figs. 2 and 3).

Overall, samples had 21.2% of ECM OTUs as truffle-like
taxa (73 OTUs) and 54.1% as taxa with ambiguous fruiting
habit (186 OTUs). Scat samples had a higher proportion of
OTUs matching truffle-like fungi than root or soil samples
(30-90%, depending on site and season, compared to 17—
23% for root samples and 7-8% for soil samples). Scat sam-
ples from the fungal specialist (B. tropica) had a higher pro-
portion of ECM truffle-like OTUs (30-90%) than all other
mammal species with generalist diets combined (18-73%).

Relative abundance

Truffle-like and secotioid taxa (e.g. Cortinariaceae and
Hysterangiaceae) constituted higher proportions of the domi-
nant mycorrhizal root-associating communities compared to
soil communities (Table 1; Fig. 3). Soil mycorrhizal commu-
nities were dominated by taxa with mixed fruiting habits (e.g.
truffle-like taxa and mushroom taxa and Russula and
Cortinarius that could represent truffle-like, secotioid or
mushroom taxa; Table 1 and Fig. 3). These patterns of relative

abundance were consistent across the two sites and two sea-
sons we measured (Table 1). Of the dominant mycorrhizal
OTUs associating with root samples, three out of four genera
were truffle-like from Hysterangiales (Hysterangium,
Mesophellia and Chondrogaster; Table 1). Four truffle-like
OTUs were shared between dominant root taxa and mamma-
lian diets and five dominant ECM OTUs were shared between
soil and scat samples (Table 1). Within taxa, comparisons
showed that Cortinarius was more OTU-rich and more rela-
tively abundant in roots and soil compared to scat samples,
whereas Malajczukia and Mesophellia (Mesophelliaceac)
were more OTU-rich and abundant in scat samples compared
to soil and roots (Table 1; Fig. 2). Hysterangium
(Hysterangiaceae) and Chondrogaster (Mesophelliaceae)
were relatively more abundant in roots.

Shared taxa between samples

The percentage of shared taxa between fungal specialist diets
and ECM communities on roots (36.6%) and in soil (28%)
was slightly higher than that for fungal generalist diets (26 and
14.7%, respectively; Fig. 4). The percentage of shared truffle-
like OTUs from roots and soil and fungal specialist diets was
much higher (87.5 and 78.8%, respectively; Fig. 4). In con-
trast, just over half of the truffle-like taxa from root and soil
samples overlapped with fungal generalist diets (52—-53%).
Arbuscular mycorrhizal (AM) OTU richness was highest from
soil samples and AM communities from roots did not overlap
significantly with mammalian scat samples (< 1.8%; Fig. 4).

Mycorrhizal Family

AM n
0.8 = .
Acaulosporaceae Hysterangiaceae
0.6 Amanitaceae Inocybaceae
Ambisporaceae Mesophelliaceae
0.4 = )
Bankeraceae Myxotrichaceae
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[0)
e Cantharellaceae Paxillaceae
S | =
-g 0.0 = _— — )
3 Claroideoglomeraceae Pyronemataceae
s n/
o y y Clavulinaceae Rhizopogonaceae
T 08 -
& Cortinariaceae Russulaceae

Diplocystidiaceae Sclerodermataceae

Diversisporaceae Strophariaceae

root scat soil root scat

Fig. 3 Relative abundance of mycorrhizal families in different samples
(soil, roots and scats) split by mycorrhizal type (AM = arbuscular
mycorrhizal) and fruiting habit (n = fruiting habit other than truffle-like
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0.4
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.l | =
T T T T T T

Gigasporaceae Thelephoraceae
Glomeraceae Tricholomataceae
Gloniaceae Tuberaceae
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taxa, n/y =unknown fruiting habit, y = truffle-like/sequestrate taxa).
Black bars are overlapping boundary lines representing OTUs with a
relative abundance too small to display
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Table 1 Mycorrhizal OTUs that make up the dominant proportion
(cumulatively 90% of sequence abundance) of samples per site (DC =
Davies Creek, TD = Tinaroo Dam), sample type and season, with number
of replicates (1), total OTUs per sample group (total), percent relative
abundance (RA), accession number, e-value, percentage similarity with
database sequence (ID), percentage overlap with reference sequence
(Cov) and OTU sequence length (SL). Taxa in boldface are truffle-like/
sequestrate and underlined are secotioid or higher taxa that include

truftle-like/sequestrate or secotioid taxa. When fruiting habit is listed at
genus level, it applies to the whole genus. Mycorrhizal status (Myc) is
either ectomycorrhizal (ECM), ericoid mycorrhizal (ErM) or arbuscular
mycorrhizal (AM). The mammalian specialist scats are from Bettongia
tropica. The mammalian generalist scats are from Isoodon macrourus,
1. obesulus, Melomys sp., Trichosurus vulpecula, Uromys caudimaculatus
and Zyzomys argurus

Site  Sample Season n Total RA  Fungal taxa Myc  Accession e-value ID Cov SL
DC  roots dry 6° 84 64.4  Hysterangium aggregatum ECM KY697566-7 2.21E-133 100 97.9 333
17.2  Cortinarius globuliformis ECM  AF325582 2.50E-141 99 100 350

5.7  Hysterangium aggregatum  ECM  KY697566-7 2.16E-129 98 97.9 335

5.3 Cortinarius globuliformis ECM  AF325582 3.24E-142 99 100 349

roots wet 6° 102 441  Cortinarius ECM FR731477 1.53E-143 100  99.7 350

12.5  Hysterangium® ECM  KC222660 1.00E-144 94 100 340

11.8  Hysterangium cf gardneri®  ECM  KY697590 3.96E-139 100  99.7 340

114 Hpysterangium aggregatum  ECM  KY697566-7 221E-133 100 979 333

7.1 Mesophellia oleifera“ ECM KY697602-3  4.15E-177 100 100 425

3.9  Cortinarius ECM KJ421051 4.44E-112 91 100 358

TD  roots wet 6° 99 531  Cortinarius ECM FR731477 1.53E-143 100  99.7 350
12.5  Mesophellia“ ECM  GQ981511 2.00E-111 91 98 298

12.4  Cortinarius ECM  KF732610 5.34E-105 89 100 353

9.3 Mesophellia oleifera® ECM KY697602-3 4.86E-166 97 100 420

4.4  Chondrogaster spB/spF* ECM KY697582-5 4.75E-151 100 100 366

DC  specialist diet dry 7 51 31.0  Mesophellia®® ECM  GQ981511 2.00E-111 91 98 298
19.5  Malajcukia ingrattissima® ECM  KY697598 6.60E-156 100 100 371

19.3  Mesophellia oleifera“ ECM KY697602-3 4.15E-177 100 100 425

17.1  Mesophellia glauca ECM  GQ981510 9.13E-147 98 99 376

5.8  Mesophellia glauca ECM  GQ981511 1.00E-162 97 99 354

specialist diet wet 6 24 347  Russula’ ECM  LC006943 3.99E-138 91 100 426

329  Mesophellia®’ ECM  GQ981511 2.00E-111 91 98 298

17.5  Russula ECM UDB016041 6.92E-129 93 100 376

7.0  Cortinarius ECM  FJ157098 8.08E-118 92 100 371

TD  specialist diet ~ wet 16 70 264 Malajcukia ingrattissima’ ECM KY697598 6.60E-156 100 100 377
166  Mesophellia®” ECM  GQ981511 2.00E-111 91 98 298

15.2  Mesophellia ECM  GQ981511 2.00E-110 91 99 295

12.8  Mesophellia glauca ECM  GQ981510 9.13E-147 98 99 376

72 Russula’ ECM  LC008293 395E-138 91 100 422

6.1  Scleroderma sgB/sgC‘"_d ECM KY697606-7 3.41E-146 100 100 355

3.4 Mesophellia oleifera“ ECM  KY697602-3 4.86E-166 97 100 420

3.0  Mesophellia oleifera“ ECM KY697602-3 4.15E-177 100 100 425

DC  generalist diets  dry 11 27 688  Malajcukia ingrattissima® ECM  KY697598 6.60E-156 100 100 377
18.7  Mesophellia®* ECM  GQ981511 2.00E-111 91 98 298

9.6  Mesophellia ECM GQ981511 2.00E-110 91 99 295

generalist diets ~ wet 8 29 353  Mesophellia ECM  GQ981511 2.00E-110 91 99 295

30.0  Russula® ECM  LC006943 3.99E-138 91 100 426

16.8  Russula ECM UDB016041 6.92E-129 93 100 376

11.5  Lactarius rufus ECM  KT165272 4.86E-170 100 100 409

TD  generalist diets ~ wet 8 24 714 Rhizopogon pseudoroseolus ECM  AJ810040 2.84E-168 100 100 405
9.2 Mesophellia“* ECM  GQ981511 2.00E-111 91 98 298

79  Malajcukia ingrattissima® ECM  KY697598 6.60E-156 100 100 377

2.6  Hysterangium‘ ECM  KC222660 1.00E-144 94 100 341
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Table 1 (continued)
Site  Sample Season n Total RA  Fungal taxa Myc  Accession e-value ID Cov SL
DC  soil dry 6° 196 224 Russula ECM UDB016041  1.08E-122 92 100 370
19.9  Russula® ECM  LC006943 3.99E-138 91 100 426
11.5  Russula ECM UDBO016041 4.05E-127 92 100 373
6.4 Russula anthracina ECM UDBOI1194  5.00E-151 97 100 382
49  Amanita ECM KP071067 2.94E-126 94 100 356
3.6 Inocybe ECM  FJ904133 1.39E-100 88 100 344
3.5  Hpysterangium aggregatum ECM KY697566-7 221E-133 100 97.9 333
3.1  Russula ECM EU019930.1 1.63E-104 93 80.4 382
2.7 Inocybe ECM  JQ085932 1.01E-91 87 100 346
23 Mesophellia® ECM  GQ981511 2.00E-111 91 98 298
2.1 Lactarius ECM HQ318282 2.43E-129 94 100 368
1.3 Inocybe ECM JX178624 2.40E-98 86 100 359
1.3 Auritella serpentinocystis ECM  KJ729858 3.63E-150 100 100 364
1.2 Cortinarius globuliformis ECM  AF325582 2.50E-141 99 100 350
0.9  Russula ECM UDBO016041  2.40E-125 92 100 373
0.8  Hpysterangium aggregatum ECM  KY697566-7 2.60E-122 97 97.9 330
0.8 Russula ECM  AB509981 3.49E-138 94 99.7 380
0.7  Cortinarius ECM KRO11131 2.92E-122 93 100 363
0.6 Cortinarius globuliformis ECM  AF325582 3.24E-142 99 100 349
soil wet 6° 251 24.8  Russula ECM UDB016041  4.05E-127 92 100 373
13.7  Cortinarius ECM GU233352 1.41E-96 88 100 357
9.6  Russula’ ECM  LC006943 3.99E-138 91 100 426
8.0 Auritella chamaecephala ECM  KT378201 9.00E-138 97 100 358
7.5  Inocybe ECM  JQ085932 1.01E-91 87 100 346
4.7  Cortinarius ECM KJ421051 4.44E-112 91 100 358
45  Malajcukia ingrattissima® ECM  KY697598 6.60E-156 100 100 377
2.5  Russula ECM UDB016041  1.08E-122 92 100 370
23 Lactarius ECM HQ318282 2.43E-129 94 100 368
1.8  Mesophellia® ECM  GQ981511 2.00E-111 91 98 298
1.5 Amanita ECM  JF899547 4.64E-112 89 100 371
1.1 Cantharellus ECM  AB509732 8.03E-106 85 99.7 398
0.9  Russula ECM UDBO016041  3.12E-126 92 100 373
0.8  Auritella serpentinocystis ECM  KJ729858 3.63E-150 100 100 364
0.7  Russula ECM KM373243 3.51E-134 93 100 391
0.7  Hysterangium aggregatum  ECM  KY697566-7 221E-133 100 97.9 333
0.6  Scleroderma sgB/sgC”:d ECM KY697606-7 3.41E-146 100 100 355
0.5  Oidiodendron ErM®  AF062808.1  1.51E-105 95 100 291
0.5  Glomeromycetes AM JF276264 4.84E-128 96 100 348
0.4 Auritella ECM KT378201 4.51E-116 92 100 354
0.4  Glomerales AM AY394681 3.63E-76 81 100 380
0.3 Glomerales AM HE794042 2.00E-117 93 100 338
0.3 Glomeraceae AM KM226647 1.20E-115 97 88.6 343
0.3 Inocybe ECM  JX178624 2.40E-98 86 100 359
0.3 Glomerales AM KP235575 1.87E-101 90 97.5 354
0.3 Oidiodendron EtM®  KX640607 3.00E-131 96 99.7 289
0.2 Russula ECM UDBO016041  8.38E-122 91 99.5 373
0.2 Glomerales AM JX276895 4.56E-124 95 100 340
0.2 Glomerales AM KM226647 3.30E-80 86 88.6 343
0.2 Glomerales AM AY394681 1.72E-81 82 100 374
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Table 1 (continued)

Site  Sample Season n Total RA  Fungal taxa Myc  Accession e-value ID Cov SL
TD  soil wet 6° 289 12.2  Cortinarius globuliformis ECM  AF325582 6.96E-141 99 100 351
11.5  Cortinarius globuliformis ECM  AF325582 3.24E-142 99 100 349
9.2 Inocybe alienospora ECM KP171105 1.88E-140 99 100 343
6.9  Cortinarius ECM FR731477 1.53E-143 100 99.7 350
6.5  Amanita egregia ECM KP012748 2.82E-134 100 100 328
5.6 Lactarius ECM  AB509713 4.60E-112 90 99.7 369
5.0  Inocybe ECM  KP308804 6.00E-135 89 94 359
4.8  Inocybe ECM KP308804 3.05E-99 87 100 352
4.4 Lactarius eucalypti ECM UDBO002671  1.70E-162 96 100 420
32 Clavulina ECM  JQ724058 3.49E-103 85 100 383
3.1  Austroboletus subvirens ECM  KP242209 5.04E-155 100 100 375
2.8  Zelleromyces spE ECM KY697617-9  8.92E-153 96 100 399
2.6 Lactifluus ECM  KM282287 1.36E-127 95 100 351
2.1 Inocybe ECM  AMS882711 2.72E-99 90 100 321
2.0 Russula ECM UDBO016041  1.08E-122 92 100 370
1.5  Scleroderma sgB/SQC”’_d ECM KY697606-7 3.41E-146 100 100 355
14 Russula” ECM  LC006943 3.99E-138 91 100 426
1.1 Pisolithus croceorrhizus ECM  JN847473 8.64E-157 100 100 379
0.8  Inocybe violaceocaulis ECM KP641643 4.75E-151 100 100 366
0.8  Amanita ECM GU222312 3.39E-111 92 94.1 356
0.6  Pisolithus croceorrhizus ECM JN847473 6.64E-156 99 100 379
0.5 Cortinarius globuliformis ECM  AF325582 3.25E-142 99 100 350
0.5  Amanita ECM ABO015702 8.29E-95 87 100 355
0.5  Glomerales AM IN195694 5.02E-132 96 100 350
0.5  Mesophellia ECM  GQ981511 8.00E-116 92 97 301
04  Russula” ECM  LC008293 3.95E-138 91 100 422

*Indicates taxa that are indistinguishable from ITS2 sequences (within 3% similarity) from morphological groups identified in Abell-Davis (2008),

Online Resource 2

® Includes three subsamples per sample pooled computationally
¢ Indicates OTUs that are shared between root and scat samples
9Indicates OTUs that are shared between scat and soil samples

©The ericaceous shrub, Melichrus urceolatus, was present at low abundance at this site

Almost all Hysterangiaceae, Mesophelliaceae and
Tuberaceae truffle and truffle-like taxa sequenced from roots
and soil were also recovered from mammalian scats (Fig. 5).
Hysterangiaceae and Mesophelliaceae made up between 28
and 71% of the ECM sequence abundance of root samples
(depending on site and season; Table 1). Of the families se-
quenced from root samples, over half (59%) of Russulaceae,
20% of Inocybaceae and 7% of Cortinariaceae were also in
scat samples (Fig. 5).

Discussion
The hypothesis that mammal communities are important for

plant-mycorrhizal relationships, and indirectly are also con-
tributing to the health of mycorrhizal host trees and nutrient
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cycling (Johnson 1996) assumes that mammal-dispersed truf-
fle-like fungi are an important part of mycorrhizal communi-
ties. Our data support this assumption, at least in north-east
Australian woodlands with a diverse mammalian community
including the fungal specialist, B. tropica. Dominant compo-
nents of the root-associating mycorrhizal community were
ECM truffle-like taxa dispersed by mammals. In another study
of tropical ECM communities, truffle-like taxa
(Hysterangiales; Hysterangium and Nothocastoreum) were al-
so found in the dominant portion as sporocarps and on roots
(Reddell et al. 1999). This indicates that mammals can poten-
tially have a substantial influence on the functioning ECM
community. Additionally, the fungal specialist, B. tropica,
has previously found to consume a higher diversity and more
unique truffle-like taxa than the combined diets of fungal gen-
eralists in the same community (Nuske et al. 2018). Indeed,
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most truffle-like taxa associating with roots were within the
fungal specialists’ diet. By dispersing a high diversity of ECM
inocula, these mammals, particularly fungal specialists, ap-
pear to indirectly contribute to plant productivity and nutrient
cycling in these ecosystems.

The hypothesis linking mycophagous mammals to plant
health and ecosystem functioning also implies that if the mam-
mal community were to be altered, then the inoculum available
for new colonising roots is also altered (over time, potentially
lowering truffle-like fungal diversity). If dispersal of these taxa
were reduced via changes to the mammal community, then the
ECM community is likely to experience major shifts, with un-
known consequences for plant health and nutrient cycling.
Within Australia, altered ECM communities and decreases in
ECM colonisation rates have previously been associated with
Eucalypt dieback and decreased crown health (Scott et al. 2012;
Ishaq et al. 2013; Horton et al. 2013). Additionally, Australia
has experienced high rates of mammal extinction and decline
(Short and Smith 1994; Woinarski et al. 2015). Combined with
our results, these observations raise concerns of major alter-
ations of landscape-level ecosystem function, underscoring
the need for further research. Firstly, further studies are needed
to confirm whether this ECM community structure is typical for

All OTUs roots ECM
scats
Specialist
scats
soil
Truffles
roots
AM
scats
Specialist
scats

soil

Fig. 4 Venn diagrams; the size of a circle represents the relative OTU
richness of each sample type (soil, roots or scats) within each subsample
of data (ectomycorrhizal = ECM, arbuscular mycorrhizal = AM,
sequestrate/truffle-like = truffles and all OTUs). Overlapping areas
represent the proportion of OTUs shared between sample types,
whereas the non-overlapping areas represent OTUs unique to specified
substrate. The total number of OTUs is 9358, 428 for AM fungi, 344 for

Australian woodlands. Secondly, future studies should utilise
areas where fungal specialists have recently gone extinct or a
reduction of mammal diversity has occurred and compare to
areas with higher mammal diversity to measure any changes in
ECM communities. Thirdly, studies are needed to investigate
the functional redundancy of ECM taxa between truffle-like
and epigeous taxa for aspects that interact with plant health
and nutrient cycling.

Many mycophagy studies have found spores of sporocarpic
AM fungi (truffle-like) in mammalian diets, mostly Glomus
spp. (Janos et al. 1995; Vernes and Dunn 2009; Nuske et al.
2017). Indeed, these spores have been shown to be viable by
inoculating bioassay seedlings with scats containing AM spores
(McGee and Baczocha 1994; Reddell et al. 1997). However,
our data from an Australian sclerophyll forest show that mam-
malian diets do not overlap significantly with AM fungi asso-
ciating with roots or the general soil environment. This indi-
cates that, at least in terms of species diversity, mammal dis-
persal of AM spores does not have a significant effect on the
structure of AM communities in this system. This does not
discount other affects mammals may indirectly have on AM
communities through physical disturbances or altering plant
communities (Gehring and Whitham 1994; Gehring et al.

roots roots

ECM

Generalist
scats

. soil
soil

Truffles
roots

roots

Generalist
scats

soil

soil

ECM fungi and 116 for sequestrate/truffle-like fungi. Specialist scats are
from fungal specialist Bettongia tropica, and generalist scats are from
Isoodon macrourus, I. obesulus, Melomys sp., Trichosurus vulpecula
(ECM only) and Zyzomys argurus. Note: for AM fungi, scats and roots
shared 1.8% of taxa and scats and soil shared 0.8% of taxa and this is not
shown because there were no taxa shared by all samples
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Hysterangiaceae
roots

Cortinariaceae

soil

scats

Mesophelliaceae
Tuberaceae

roots

scats

scats
soil

Fig. 5 Venn diagrams; the size of a circle represents the relative OTU
richness of each sample type (soil, roots or scats) within each family of
fungi (Hysterangiaceae [26 OTUs], Mesophelliaceae [59 OTUs] and
Tuberaceae [15 OTUs] contain only truffle and truffle-like/sequestrate
species; Cortinariaceae [128 OTUs], Russulaceae [159 OTUs] and

2002). Other mycophagy studies focusing on AM fungi need to
consider the whole community in the soil and on plant roots in
order to place appropriate emphasis on these dispersal events
for the whole AM fungal community. Nevertheless, mammal
dispersal may significantly affect the population structure of
sporocarpic AM fungi such as Glomus spp.

Previous ECM community studies in Australia classified
between 3 and 27% of taxa as truffle-like (Online Resource
1, Table S1). We report a percentage of truffle-like taxa
within this range (21%). We also found that truffle-like taxa
comprise dominant portions of the community. Russula and
Cortinarius were the most OTU-rich taxa and were included
in the relatively abundant groups from our sequencing data
and in other ECM surveys in Australia (Online Resource 1,
Table S1). However, as many OTUs matching these genera
did not match known species, there was not enough taxo-
nomic resolution to discern fruiting habit as these genera
contain truffle-like species and mushroom species (e.g.
Peintner et al. 2001; Lebel and Tonkin 2007). This limits
our capacity to draw conclusions about how truffle-like fun-
gi form part of ECM diversity, and ultimately the overall
influence of mycophagous mammals on the ECM com-
munity. It also emphasises the need for further targeted
truffle-like fungal surveys and taxonomic work on these
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Russulaceae

scats

roots

roots

scats

soil

soil

Inocybaceae roots

soil

scats

roots

soil

Inocybaceae [132 OTUs] contain truffle-like and/or secotioid species as
well as mushroom species). Overlapping areas represent the proportion of
OTUs shared between sample types, whereas the non-overlapping areas
represent OTUs unique to specified substrate

groups, coupled with continuous updating of online se-
quence databases.

While we took precautions in this study by removing
OTUs present in negative and positive controls, contami-
nant DNA could still be present and errors in OTU as-
signment to samples can occur via tag-switching (Carlsen
et al. 2012; Nguyen et al. 2015a). For this reason, we
consider the proportion of overlapping taxa between sam-
ple types to be estimates. Also, taxa we observe at low
relative abundances may be indistinguishable from con-
tamination. Amplicon sequencing data are considered
‘semi-quantitative’ in that relative abundances of se-
quences within rather than between taxa can be more
meaningful as PCR procedures may selectively amplify
certain taxa more than others (among other reasons)
(Amend et al. 2010). Nevertheless, Nguyen et al.
(2015a) argue that relative abundances of taxa may still
have ecological value, provided the sequencing errors are
appropriately handled and recognised. While we cannot
verify whether dominant truffle-like taxa observed were
selectively amplified, comparisons within truffle-like taxa
(e.g. Hysterangium) show that they have a higher abun-
dance in root-associated communities. OTUs matching
truffle-like taxa Malajczukia/Mesophellia, which have a
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high relative abundance in scats, are also present in root-
associating communities. As our results were consistent
across two sites and seasons, we consider our assessment
of the ECM community structure sufficiently accurate to
be confident in the conclusion that truffle-like taxa, and
their mammalian dispersers, are important to ECM com-
munities in this system.

Unexpectedly, some OTUs matched truffle sequences of
non-Australian taxa (Tuber sp. and Rhizopogon
pseudoroseolus). No Tuber species are known to occur native-
ly in Australia, or have associations with native flora (Bonito
et al. 2013). Introduced Tuber species associate with intro-
duced trees (mainly on Quercus and Corylus) in temperate
regions of Australia (Linde and Selmes 2012; Thomas 2014)
and are also known to associate with Pinaceae (Bonito et al.
2013). Rhizopogon species also associate with Pinaceae and
other non-native Australian trees (Ivory and Munga 1983;
Tedersoo et al. 2007) and have been recorded in Australian
pine plantations (Bell and Adams 2004). Incidentally, there is
a plantation of Pinus caribaea ca. 10 km from one of the study
sites (Tinaroo Dam) (Applegate and Nicholson 1988).
Rhizopogon was found in highest abundance in
U. caudimaculatus and Per. nasuta scats at Tinaroo Dam
(Nuske et al. 2018); both mammal species have been known
to have home ranges within this distance (Scott et al. 1999;
Streatfeild 2009). Therefore, it is possible that the OTUs
matching R. pseudoroseolus or Tuber sp. resulted from native
mammals consuming a non-native, introduced
ectomycorrhizae associated with local Pinus plantations.
Alternatively, they may have resulted from a contamination
from laboratory processing. Nevertheless, the five OTUs iden-
tified are unlikely to alter the main findings of this study.

Conclusion

Diverse ectomycorrhizal fungal communities are vital for
healthy ecosystems because of their intimate interactions with
plants and pivotal role in nutrient cycling. These fungi also
provide food sources for many animals, including the endan-
gered and threatened fungal specialists; species like B. tropica.
Little is known about how disturbances to these ecosystems
can change ECM fungal communities. Our data show that
mammal dispersed truffle-like taxa can form a dominant pro-
portion of root-associating ECM fungal communities. This
suggests that changes in the mammal community could, over
time, induce changes in functioning ECM fungal communi-
ties, which may in turn impact plant health and nutrient cycles
on a large scale. Australia has already lost many mammal
species and many species are in decline (Woinarski et al.
2015). Conservation of mammal diversity may not only be
imperative for ecosystem function at higher trophic levels,

but also for maintaining fungal diversity and healthy
mycorrhizal-plant relationships.
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