206 research outputs found

    Histo-blood group gene polymorphisms as potential genetic modifiers of infection and cystic fibrosis lung disease severity

    Get PDF
    Background: The pulmonary phenotype in cystic fibrosis (CF) is variable; thus, environmental and genetic factors likely contribute to clinical heterogeneity. We hypothesized that genetically determined ABO histo-blood group antigen (ABH) differences in glycosylation may lead to differences in microbial binding by airway mucus, and thus predispose to early lung infection and more severe lung disease in a subset of patients with CF. Methods and Principal Findings: Clinical information and DNA was collected on >800 patients with the ΔF508/ΔF508 genotype. Patients in the most severe and mildest quartiles for lung phenotype were enrolled. Blood samples underwent lymphocyte transformation and DNA extraction using standard methods. PCR and sequencing were performed using standard techniques to identify the 9 SNPs required to determine ABO blood type, and to identify the four SNPs that account for 90-95% of Lewis status in Caucasians. Allele identification of the one nonsynonymous SNP in FUT2 that accounts for >95% of the incidence of nonsecretor phenotype in Caucasians was completed using an ABI Taqman assay. The overall prevalence of ABO types, and of FUT2 (secretor) and FUT 3 (Lewis) alleles was consistent with that found in the Caucasian population. There was no difference in distribution of ABH type in the severe versus mild patients, or the age of onset of Pseudomonas aeruginosa infection in the severe or mild groups. Multivariate analyses of other clinical phenotypes, including gender, asthma, and meconium ileus demonstrated no differences between groups based on ABH type. Conclusions and Significance: Polymorphisms in the genes encoding ABO blood type, secretor or Lewis genotypes were not shown to associate with severity of CF lung disease, or age of onset of P. aeruginosa infection, nor was there any association with other clinical phenotypes in a group of 808 patients homozygous for the ΔF508 mutation

    Traits, trends and hits of orphan drug designations in cystic fibrosis

    Get PDF
    Background: In the United States (US) and in Europe, cystic fibrosis (CF) qualifies as a rare disease, thus positioning the field to benefit from regulatory incentives provided by orphan drug designation (ODD) to boost pharmaceutical research and development. In this study, we analyzed the pool of products for the treatment of CF that received such incentives from the US Food and Drug Administration (FDA) and/or the European Medicines Agency (EMA) over the past two decades. We describe the characteristics and trends in ODDs over time and explore factors that might be determinants of successful drug development. Methods: We collected the products that received the ODD from the registries of the FDA and the EMA from 2000 to 2021, characterizing their nature, development stage, and type of sponsor. We categorized the study drugs according to the therapeutic target addressed and described trends of drug development over the study period. A logistic regression analysis was done to assess how ODD characteristics were associated with the approval for market authorization. Results: From 2000–2021, 107 ODDs were collectively granted by the FDA and the EMA for products developed for the treatment of CF. Although the trends of the number of ODDs granted remained stable over time, those targeting the CF basic protein defect increased from 6 out of 54 (11.1%) in the first half of the study period up to 20 out of 54 (37.7%) in the second half, while those treating symptoms decreased from 48/54 (88.9%) to 33/53 (62.3%). Overall, 10 products obtained marketing approval: 7 in both the US and Europe, 3 only in Europe. All the approved ODDs were chemical products for chronic use. No statistically significant difference was found across the examinated variables, but we observed possible drivers of successful drug development for ODDs targeting CFTR, as well as for those with active substances previously marketed, and for those developed by large companies and companies with experience in developing orphan drugs. By contrast, our findings suggest that financial issues most hamper the development of ODDs sponsored by small-medium enterprises. Conclusions: Although ODDs for treating infection and other CF sequelae accounted for the majority, we observed a shift of ODDs toward mechanism-based products over the study period. In line with other rare diseases, we found that approximately 1/10 ODDs for CF reached the status of marketing approval. Advances in disease genetics paved the way for a shift in CF drug development; however, we described how the convergence of pharmaceutical technology, the financial environment, and the regulatory ecosystem played a crucial role in successful marketing authorization in CF

    Different CFTR modulator combinations downregulate inflammation differently in cystic fibrosis

    Get PDF
    Previously, we showed that serum and monocytes from patients with CF exhibit an enhanced NLRP3-inflammasome signature with increased IL-18, IL-1β, caspase-1 activity and ASC speck release (Scambler et al. eLife 2019). Here we show that CFTR modulators down regulate this exaggerated proinflammatory response following LPS/ATP stimulation. In vitro application of ivacaftor/lumacaftor or ivacaftor/tezacaftor to CF monocytes showed a significant reduction in IL-18, whereas IL-1β was only reduced with ivacaftor/tezacaftor. Thirteen adults starting ivacaftor/lumacaftor and eight starting ivacaftor/tezacaftor were assessed over three months. Serum IL-18 and TNF decreased significantly with treatments, but IL-1β only declined following ivacaftor/tezacaftor. In (LPS/ATP-stimulated) PBMCs, IL-18/TNF/caspase-1 were all significantly decreased and IL-10 was increased with both combinations. Ivacaftor/tezacaftor alone showed a significant reduction in IL-1β and pro-IL-1β mRNA. This study demonstrates that these CFTR modulator combinations have potent anti-inflammatory properties, in addition to their ability to stimulate CFTR function, which could contribute to improved clinical outcomes

    Mutations that permit residual CFTR function delay acquisition of multiple respiratory pathogens in CF patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung infection by various organisms is a characteristic feature of cystic fibrosis (CF). <it>CFTR </it>genotype effects acquisition of <it>Pseudomonas aeruginosa (Pa)</it>, however the effect on acquisition of other infectious organisms that frequently precede <it>Pa </it>is relatively unknown. Understanding the role of CFTR in the acquisition of organisms first detected in patients may help guide symptomatic and molecular-based treatment for CF.</p> <p>Methods</p> <p>Lung infection, defined as a single positive respiratory tract culture, was assessed for 13 organisms in 1,381 individuals with CF. Subjects were divided by predicted CFTR function: 'Residual': carrying at least one partial function <it>CFTR </it>mutation (class IV or V) and 'Minimal' those who do not carry a partial function mutation. Kaplan-Meier estimates were created to assess <it>CFTR </it>effect on age of acquisition for each organism. Cox proportional hazard models were performed to control for possible cofactors. A separate Cox regression was used to determine whether defining infection with <it>Pa</it>, mucoid <it>Pa </it>or <it>Aspergillus (Asp) </it>using alternative criteria affected the results. The influence of severity of lung disease at the time of acquisition was evaluated using stratified Cox regression methods by lung disease categories.</p> <p>Results</p> <p>Subjects with 'Minimal' CFTR function had a higher hazard than patients with 'Residual' function for acquisition of 9 of 13 organisms studied (HR ranging from 1.7 to 3.78 based on the organism studied). Subjects with minimal CFTR function acquired infection at a younger age than those with residual function for 12 of 13 organisms (p-values ranging: < 0.001 to 0.017). Minimal CFTR function also associated with younger age of infection when 3 alternative definitions of infection with <it>Pa</it>, mucoid <it>Pa </it>or <it>Asp </it>were employed. Risk of infection is correlated with CFTR function for 8 of 9 organisms in patients with good lung function (>90%ile) but only 1 of 9 organisms in those with poorer lung function (<50%ile).</p> <p>Conclusions</p> <p>Residual CFTR function correlates with later onset of respiratory tract infection by a wide spectrum of organisms frequently cultured from CF patients. The protective effect conferred by residual CFTR function is diminished in CF patients with more advanced lung disease.</p

    Human Primary Epithelial Cell Models: Promising Tools in the Era of Cystic Fibrosis Personalized Medicine

    Get PDF
    Cystic fibrosis (CF) is an inherited disorder where individual disease etiology and response to therapeutic intervention is impacted by CF transmembrane regulator (CFTR) mutations and other genetic modifiers. CFTR regulates multiple mechanisms in a diverse range of epithelial tissues. In this Review, we consolidate the latest updates in the development of primary epithelial cellular model systems relevant for CF. We discuss conventional two-dimensional (2-D) airway epithelial cell cultures, the backbone of in vitro cellular models to date, as well as improved expansion protocols to overcome finite supply of the cellular source. We highlight a range of strategies for establishment of three dimensional (3-D) airway and intestinal organoid models and evaluate the limitations and potential improvements in each system, focusing on their application in CF. The in vitro CFTR functional assays in patient-derived organoids allow for preclinical pharmacotherapy screening to identify responsive patients. It is likely that organoids will be an invaluable preclinical tool to unravel disease mechanisms, design novel treatments, and enable clinicians to provide personalized management for patients with CF

    Neutrophil Extracellular Trap (NET)-Mediated Killing of Pseudomonas aeruginosa: Evidence of Acquired Resistance within the CF Airway, Independent of CFTR

    Get PDF
    The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by CF strains of P. aeruginosa

    Potentiators (specific therapies for class III and IV mutations) for cystic fibrosis

    Get PDF
    Cystic fibrosis (CF) is the commonest inherited life‐shortening illness in white populations, caused by a mutation in the gene that codes for the cystic fibrosis transmembrane regulator protein (CFTR), which functions as a salt transporter. This mutation mainly affects the airways where excess salt absorption dehydrates the airway lining leading to impaired mucociliary clearance. Consequently, thick, sticky mucus accumulates making the airway prone to chronic infection and progressive inflammation; respiratory failure often ensues. Other complications include malnutrition, diabetes and subfertility. Increased understanding of the condition has allowed pharmaceutical companies to design mutation‐specific therapies targeting the underlying molecular defect. CFTR potentiators target mutation classes III and IV and aim to normalise airway surface liquid and mucociliary clearance, which in turn impacts on the chronic infection and inflammation. This is an update of a previously published review. Objectives To evaluate the effects of CFTR potentiators on clinically important outcomes in children and adults with CF. Search methods We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles, reviews and online clinical trial registries. Last search: 21 November 2018. Selection criteria Randomised controlled trials (RCTs) of parallel design comparing CFTR potentiators to placebo in people with CF. A separate review examines trials combining CFTR potentiators with other mutation‐specific therapies. Data collection and analysis The authors independently extracted data, assessed the risk of bias in included trials and used GRADE to assess evidence quality. Trial authors were contacted for additional data. Main results We included five RCTs (447 participants with different mutations) lasting from 28 days to 48 weeks, all assessing the CFTR potentiator ivacaftor. The quality of the evidence was moderate to low, mainly due to risk of bias (incomplete outcome data and selective reporting) and imprecision of results, particularly where few individuals experienced adverse events. Trial design was generally well‐documented. All trials were industry‐sponsored and supported by other non‐pharmaceutical funding bodies. F508del (class II) (140 participants) One 16‐week trial reported no deaths, or changes in quality of life (QoL) or lung function (either relative or absolute change in forced expiratory volume in one second (FEV1) (moderate‐quality evidence). Pulmonary exacerbations and cough were the most reported adverse events in ivacaftor and placebo groups, but there was no difference between groups (low‐quality evidence); there was also no difference between groups in participants interrupting or discontinuing treatment (low‐quality evidence). Number of days until the first exacerbation was not reported, but there was no difference between groups in how many participants developed pulmonary exacerbations. There was also no difference in weight. Sweat chloride concentration decreased, mean difference (MD) ‐2.90 mmol/L (95% confidence interval (CI) ‐5.60 to ‐0.20). G551D (class III) (238 participants) The 28‐day phase 2 trial (19 participants) and two 48‐week phase 3 trials (adult trial (167 adults), paediatric trial (52 children)) reported no deaths. QoL scores (respiratory domain) were higher with ivacaftor in the adult trial at 24 weeks, MD 8.10 (95% CI 4.77 to 11.43) and 48 weeks, MD 8.60 (95% CI 5.27 to 11.93 (moderate‐quality evidence). The adult trial reported a higher relative change in FEV1 with ivacaftor at 24 weeks, MD 16.90% (95% CI 13.60 to 20.20) and 48 weeks, MD 16.80% (95% CI 13.50 to 20.10); the paediatric trial reported this at 24 weeks, MD 17.4% (P < 0.0001)) (moderate‐quality evidence). These trials demonstrated absolute improvements in FEV1 (% predicted) at 24 weeks, MD 10.80% (95% CI 8.91 to 12.69) and 48 weeks, MD 10.44% (95% CI 8.56 to 12.32). The phase 3 trials reported increased cough, odds ratio (OR) 0.57 (95% CI 0.33 to 1.00) and episodes of decreased pulmonary function, OR 0.29 (95% CI 0.10 to 0.82) in the placebo group; ivacaftor led to increased dizziness in adults, OR 10.55 (95% CI 1.32 to 84.47). There was no difference between groups in participants interrupting or discontinuing treatment (low‐quality evidence). Fewer participants taking ivacaftor developed serious pulmonary exacerbations; adults taking ivacaftor developed fewer exacerbations (serious or not), OR 0.54 (95% CI 0.29 to 1.01). A higher proportion of participants were exacerbation‐free at 24 weeks with ivacaftor (moderate‐quality evidence). Ivacaftor led to a greater absolute change from baseline in FEV1 (% predicted) at 24 weeks, MD 10.80% (95% CI 8.91 to 12.69) and 48 weeks, MD 10.44% (95% CI 8.56 to 12.32); weight also increased at 24 weeks, MD 2.37 kg (95% CI 1.68 to 3.06) and 48 weeks, MD 2.75 kg (95% CI 1.74 to 3.75). Sweat chloride concentration decreased at 24 weeks, MD ‐48.98 mmol/L (95% CI ‐52.07 to ‐45.89) and 48 weeks, MD ‐49.03 mmol/L (95% CI ‐52.11 to ‐45.94). R117H (class IV) (69 participants) One 24‐week trial reported no deaths. QoL scores (respiratory domain) were higher with ivacaftor at 24 weeks, MD 8.40 (95% CI 2.17 to 14.63), but no relative changes in lung function were reported (moderate‐quality evidence). Pulmonary exacerbations and cough were the most reported adverse events in both groups, but there was no difference between groups; there was no difference between groups in participants interrupting or discontinuing treatment (low‐quality evidence). Number of days until the first exacerbation was not reported, but there was no difference between groups in how many participants developed pulmonary exacerbations. No changes in absolute change in FEV1 or weight were reported. Sweat chloride concentration decreased, MD ‐24.00 mmol/L (CI 95% ‐24.69 to ‐23.31). Authors' conclusions There is no evidence supporting the use of ivacaftor in people with the F508del mutation. Both G551D phase 3 trials demonstrated a clinically relevant impact of ivacaftor on outcomes at 24 and 48 weeks in adults and children (over six years of age) with CF. The R117H trial demonstrated an improvement in the respiratory QoL score, but no improvement in respiratory function. As new mutation‐specific therapies emerge, it is important that trials examine outcomes relevant to people with CF and their families and that adverse events are reported robustly and consistently. Post‐market surveillance is essential and ongoing health economic evaluations are required

    VX-659-Tezacaftor-Ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles

    Get PDF
    Background The next-generation cystic fibrosis transmembrane conductance regulator (CFTR) corrector VX-659, in triple combination with tezacaftor and ivacaftor (VX-659–tezacaftor–ivacaftor), was developed to restore the function of Phe508del CFTR protein in patients with cystic fibrosis. Methods We evaluated the effects of VX-659–tezacaftor–ivacaftor on the processing, trafficking, and function of Phe508del CFTR protein using human bronchial epithelial cells. A range of oral VX-659–tezacaftor–ivacaftor doses in triple combination were then evaluated in randomized, controlled, double-blind, multicenter trials involving patients with cystic fibrosis who were heterozygous for the Phe508del CFTR mutation and a minimal-function CFTR mutation (Phe508del–MF genotypes) or homozygous for the Phe508del CFTR mutation (Phe508del–Phe508del genotype). The primary end points were safety and the absolute change from baseline in the percentage of predicted forced expiratory volume in 1 second (FEV1). Results VX-659–tezacaftor–ivacaftor significantly improved the processing and trafficking of Phe508del CFTR protein as well as chloride transport in vitro. In patients, VX-659–tezacaftor–ivacaftor had an acceptable safety and side-effect profile. Most adverse events were mild or moderate. VX-659–tezacaftor–ivacaftor resulted in significant mean increases in the percentage of predicted FEV1 through day 29 (P<0.001) of up to 13.3 points in patients with Phe508del–MF genotypes; in patients with the Phe508del–Phe508del genotype already receiving tezacaftor–ivacaftor, adding VX-659 resulted in a further 9.7-point increase in the percentage of predicted FEV1. The sweat chloride concentrations and scores on the respiratory domain of the Cystic Fibrosis Questionnaire–Revised improved in both patient populations. Conclusions Robust in vitro activity of VX-659–tezacaftor–ivacaftor targeting Phe508del CFTR protein translated into improvements for patients with Phe508del–MF or Phe508del–Phe508del genotypes. VX-659 triple-combination regimens have the potential to treat the underlying cause of disease in approximately 90% of patients with cystic fibrosis. (Funded by Vertex Pharmaceuticals; VX16-659-101 and VX16-659-001 ClinicalTrials.gov numbers, NCT03224351 and NCT03029455.
    corecore