41 research outputs found

    Friends with Benefits: Social Coupons as a Strategy to Enhance Customers’ Social Empowerment

    Get PDF
    Businesses often seek to leverage customers’ social networks to acquire new customers and stimulate word-of-mouth recommendations. While customers make brand recommendations for various reasons (e.g., incentives, reputation enhancement), they are also motivated by a desire for social empowerment—to feel an impact on others. In several multi-method studies, we show that facilitating sharing of social coupons (i.e., coupon sets that include one for self-use and one to be shared) is a unique marketing strategy that facilitates social empowerment. Firms benefit from social coupons because customers who share spend more and report greater purchase intentions than those who do not. Furthermore, we demonstrate that social coupons are most effective when the sharer’s brand relationship is new versus established. For customers with an established relationship, sharing with a receiver who also has an established relationship maximizes potential impact. Together, these studies connect social empowerment to relationship marketing and provide guidance to managers targeting social coupons

    Shared Neural Correlates Underlying Addictive Disorders and Negative Urgency

    Get PDF
    Negative urgency is a personality trait reflecting the tendency to act rashly in response to extreme negative emotions and is considered a transdiagnostic endophenotype for problematic levels of addictive behaviors. Recent research has begun to identify the neural correlates of negative urgency, many of which appear to overlap with neural circuitry underlying addictive disorders associated with negative urgency. The goal of this qualitative review is to summarize the extant literature concerning the neural correlates of negative urgency, to compare these correlates with those implicated with addictive disorders, and to propose new ways to begin to leverage such findings in treatment and intervention approaches. We also address current limitations in the field and make recommendations for areas for future growth in this research domain. Patterns of structure and function in the ventral striatum, frontal regions, such as the prefrontal cortex (PFC) and orbitofrontal cortex (OFC), and amygdala are common across addictive disorders and are related to both real-world risky behaviors and self-report measures of negative urgency. We propose that the time has come to move past considering this trait and these disorders as completely separate entities, and instead for the field to consider how general patterns of convergence across these disorders can lead to a more transdiagnostic approach to treatment and intervention. We suggest future work utilize these convergent patterns in the development of animal models of negative urgency, in the identification and testing of prime pharmacological and physiological interventions, and as objective biomarkers to be used when testing behavioral, pharmacological, and physiological intervention effectiveness. Little empirical work has been done to date in these areas and advances in these nascent fields would advance understanding and applications of the neuroscience of negative urgency

    Modeling Hypertrophic IP3 Transients in the Cardiac Myocyte

    Get PDF
    Cardiac hypertrophy is a known risk factor for heart disease, and at the cellular level is caused by a complex interaction of signal transduction pathways. The IP3-calcineurin pathway plays an important role in stimulating the transcription factor NFAT which binds to DNA cooperatively with other hypertrophic transcription factors. Using available kinetic data, we construct a mathematical model of the IP3 signal production system after stimulation by a hypertrophic α-adrenergic agonist (endothelin-1) in the mouse atrial cardiac myocyte. We use a global sensitivity analysis to identify key controlling parameters with respect to the resultant IP3 transient, including the phosphorylation of cell-membrane receptors, the ligand strength and binding kinetics to precoupled (with GαGDP) receptor, and the kinetics associated with precoupling the receptors. We show that the kinetics associated with the receptor system contribute to the behavior of the system to a great extent, with precoupled receptors driving the response to extracellular ligand. Finally, by reparameterizing for a second hypertrophic α-adrenergic agonist, angiotensin-II, we show that differences in key receptor kinetic and membrane density parameters are sufficient to explain different observed IP3 transients in essentially the same pathway
    corecore