148 research outputs found

    A poorly mixed mantle transition zone and its thermal state inferred from seismic waves

    Get PDF
    The abrupt changes in mineralogical properties across the Earth’s mantle transition zone substantially impact convection and thermochemical fluxes between the upper and lower mantle. While the 410-km discontinuity at the top of the mantle transition zone is detected with all types of seismic waves, the 660-km boundary is mostly invisible to underside P-wave reflections (P660P). The cause for this observation is debated. The dissociation of ringwoodite and garnet into lower-mantle minerals both contribute to the ‘660’ visibility; only the garnet reaction favours material exchanges across the discontinuity. Here, we combine large datasets of SS and PP precursors, mineralogical modelling and data-mining techniques to obtain a global thermal map of the mantle transition zone, and explain the lack of P660P visibility. We find that its prevalent absence requires a chemically unequilibrated mantle, and its visibility in few locations is associated with potential temperatures greater than 1,800 K. Such temperatures occur in approximately 0.6% of Earth, indicating that the 660 is dominated by ringwoodite decomposition, which tends to impede mantle flow. We find broad regions with elevated temperatures beneath the Pacific surrounded by major volcanic hotspots, indicating plume retention and ponding of hot materials in the mantle transition zone

    Humoral Responses against BQ.1.1 Elicited after Breakthrough Infection and SARS-CoV-2 mRNA Vaccination.

    Get PDF
    The Omicron BQ.1.1 variant is now the major SARS-CoV-2 circulating strain in many countries. Because of the many mutations present in its Spike glycoprotein, this variant is resistant to humoral responses elicited by monovalent mRNA vaccines. With the goal to improve immune responses against Omicron subvariants, bivalent mRNA vaccines have recently been approved in several countries. In this study, we measure the capacity of plasma from vaccinated individuals, before and after a fourth dose of mono- or bivalent mRNA vaccine, to recognize and neutralize the ancestral (D614G) and the BQ.1.1 Spikes. Before and after the fourth dose, we observe a significantly better recognition and neutralization of the ancestral Spike. We also observe that fourth-dose vaccinated individuals who have been recently infected better recognize and neutralize the BQ.1.1 Spike, independently of the mRNA vaccine used, than donors who have never been infected or have an older infection. Our study supports that hybrid immunity, generated by vaccination and a recent infection, induces higher humoral responses than vaccination alone, independently of the mRNA vaccine used

    Autocorrelation of the Ground Vibrations Recorded by the SEIS-InSight Seismometer on Mars

    Get PDF
    Since early February 2019, the SEIS (Seismic Experiment for Interior Structure) seismometer deployed at the surface of Mars in the framework of the InSight mission has been continuously recording the ground motion at Elysium Planitia. In this study, we take advantage of this exceptional data set to put constraints on the crustal properties of Mars using seismic interferometry (SI). To carry out this task, we first examine the continuous records from the very broadband seismometer. Several deterministic sources of environmental noise are identified and specific preprocessing strategies are presented to mitigate their influence. Applying the principles of SI to the single-station configuration of InSight, we compute, for each Sol and each hour of the martian day, the diagonal elements of the time-domain correlation tensor of random ambient vibrations recorded by SEIS. A similar computation is performed on the diffuse waveforms generated by more than a hundred Marsquakes. A careful signal-to-noise ratio analysis and an inter-comparison between the two datasets suggest that the results from SI are most reliable in a narrow frequency band around 2.4 Hz, where an amplification of both ambient vibrations and seismic events is observed. The average autocorrelation functions (ACFs) contain well identifiable seismic arrivals, that are very consistent between the two datasets. Interpreting the vertical and horizontal ACFs as, respectively, the P- and S- seismic reflectivity below InSight, we propose a simple stratified velocity model of the crust, which is mostly compatible with previous results from receiver function analysis. Our results are discussed and compared to recent works from the literature.This study is InSight contribution number 164. The authors acknowledge both “UniversitĂ© FĂ©dĂ©rale de Toulouse Midi PyrĂ©nĂ©es” and the “RĂ©gion Occitanie” for funding the PhD grant of Nicolas Compaire. The French authors acknowledge the French Space Agency CNES and ANR (ANR-14-CE36-0012-02 and ANR-19-CE31-0008-08) for funding the InSight Science analysis

    Stochastic Inversion of P-to-S Converted Waves for Mantle Composition and Thermal Structure: Methodology and Application

    Get PDF
    We present a new methodology for inverting P‐to‐S receiver function (RF) waveforms directly for mantle temperature and composition. This is achieved by interfacing the geophysical inversion with self‐consistent mineral phase equilibria calculations from which rock mineralogy and its elastic properties are predicted as a function of pressure, temperature, and bulk composition. This approach anchors temperatures, composition, seismic properties, and discontinuities that are in mineral physics data, while permitting the simultaneous use of geophysical inverse methods to optimize models of seismic properties to match RF waveforms. Resultant estimates of transition zone (TZ) topography and volumetric seismic velocities are independent of tomographic models usually required for correcting for upper mantle structure. We considered two end‐member compositional models: the equilibrated equilibrium assemblage (EA) and the disequilibrated mechanical mixture (MM) models. Thermal variations were found to influence arrival times of computed RF waveforms, whereas compositional variations affected amplitudes of waves converted at the TZ discontinuities. The robustness of the inversion strategy was tested by performing a set of synthetic inversions in which crustal structure was assumed both fixed and variable. These tests indicate that unaccounted‐for crustal structure strongly affects the retrieval of mantle properties, calling for a two‐step strategy presented herein to simultaneously recover both crustal and mantle parameters. As a proof of concept, the methodology is applied to data from two stations located in the Siberian and East European continental platforms.This work was supported by a grant from the Swiss National Science Foundation (SNF project 200021_159907). B. T. was funded by a DĂ©lĂ©gation CNRS and CongĂ© pour Recherches et Conversion ThĂ©matique from the UniversitĂ© de Lyon to visit the Research School of Earth Sciences (RSES), The Australian National University (ANU). B. T. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement 79382

    Seismic Constraints on the Thickness and Structure of the Martian Crust from InSight

    Get PDF
    NASA¿s InSight mission [1] has for the first time placed a very broad-band seismometer on the surface of Mars. The Seismic Experiment for Interior Structure (SEIS) [2] has been collecting continuous data since early February 2019. The main focus of InSight is to enhance our understanding of the internal structure and dynamics of Mars, which includes the goal to better constrain the crustal thickness of the planet [3]. Knowing the present-day crustal thickness of Mars has important implications for its thermal evolution [4] as well as for the partitioning of silicates and heat-producing elements between the different layers of Mars. Current estimates for the crustal thickness of Mars are based on modeling the relationship between topography and gravity [5,6], but these studies rely on different assumptions, e.g. on the density of the crust and upper mantle, or the bulk silicate composition of the planet and the crust. The resulting values for the average crustal thickness differ by more than 100%, from 30 km to more than 100 km [7]. New independent constraints from InSight will be based on seismically determining the crustal thickness at the landing site. This single firm measurement of crustal thickness at one point on the planet will allow to constrain both the average crustal thickness of Mars as well as thickness variations across the planet when combined with constraints from gravity and topography [8]. Here we describe the determination of the crustal structure and thickness at the InSight landing site based on seismic receiver functions for three marsquakes compared with autocorrelations of InSight data [9].We acknowledge NASA, CNES, partner agencies and institutions (UKSA, SSO,DLR, JPL, IPGP-CNRS, ETHZ, IC, MPS-MPG) and the operators of JPL, SISMOC, MSDS, IRIS-DMC and PDS for providing SEED SEIS data. InSight data is archived in the PDS, and a full list of archives in the Geosciences, Atmospheres, and Imaging nodes is at https://pds-geosciences.wustl.edu/missions/insight/. This work was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. ©2021, California Institute of Technology. Government sponsorship acknowledge

    INTEGRAL/SPI ground calibration

    Get PDF
    Three calibration campaigns of the spectrometer SPI have been performed before launch in order to determine the instrument characteristics, such as the effective detection area, the spectral resolution and the angular resolution. Absolute determination of the effective area has been obtained from simulations and measurements. At 1 MeV, the effective area is 65 cm^2 for a point source on the optical axis, the spectral resolution ~2.3 keV. The angular resolution is better than 2.5 deg and the source separation capability about 1 deg. Some temperature dependant parameters will require permanent in-flight calibration.Comment: 9 pages, 12 figures, 2 tables. Accepted for publication in A&AL (INTEGRAL Special issue

    Autocorrelation of the Ground Vibrations Recorded by the SEIS‐InSight Seismometer on Mars

    Get PDF
    Since early February 2019, the SEIS (Seismic Experiment for Interior Structure) seismometer deployed at the surface of Mars in the framework of the InSight mission has been continuously recording the ground motion at Elysium Planitia. In this study, we take advantage of this exceptional data set to put constraints on the crustal properties of Mars using seismic interferometry (SI). To carry out this task, we first examine the continuous records from the very broadband seismometer. Several deterministic sources of environmental noise are identified and specific preprocessing strategies are presented to mitigate their influence. Applying the principles of SI to the single-station configuration of InSight, we compute, for each Sol and each hour of the martian day, the diagonal elements of the time-domain correlation tensor of random ambient vibrations recorded by SEIS. A similar computation is performed on the diffuse waveforms generated by more than a hundred Marsquakes. A careful signal- to-noise ratio analysis and an inter-comparison between the two datasets suggest that the results from SI are most reliable in a narrow frequency band around 2.4 Hz, where an amplification of both ambient vibrations and seismic events is observed. The average autocorrelation functions (ACFs) contain well identifiable seismic arrivals, that are very consistent between the two datasets. Interpreting the vertical and horizontal ACFs as, respectively, the P- and S- seismic reflectivity below InSight, we propose a simple stratified velocity model of the crust, which is mostly compatible with previous results from receiver function analysis. Our results are discussed and compared to recent works from the literature

    The interior of Mars as seen by InSight (Invited)

    Get PDF
    InSight is the first planetary mission dedicated to exploring the whole interior of a planet using geophysical methods, specifically seismology and geodesy. To this end, we observed seismic waves of distant marsquakes and inverted for interior models using differential travel times of phases reflected at the surface (PP, SS...) or the core mantle-boundary (ScS), as well as those converted at crustal interfaces. Compared to previous orbital observations1-3, the seismic data added decisive new insights with consequences for the formation of Mars: The global average crustal thickness of 24-75 km is at the low end of pre-mission estimates5. Together with the the thick lithosphere of 450-600 km5, this requires an enrichment of heat-producing elements in the crust by a factor of 13-20, compared to the primitive mantle. The iron-rich liquid core is 1790-1870 km in radius6, which rules out the existence of an insulating bridgmanite-dominated lower mantle on Mars. The large, and therefore low-density core needs a high amount of light elements. Given the geochemical boundary conditions, Sulfur alone cannot explain the estimated density of ~6 g/cm3 and volatile elements, such as oxygen, carbon or hydrogen are needed in significant amounts. This observation is difficult to reconcile with classical models of late formation from the same material as Earth. We also give an overview of open questions after three years of InSight operation on the surface of Mars, such as the potential existence of an inner core or compositional layers above the CM

    The Naturally Processed CD95L Elicits a c-Yes/Calcium/PI3K-Driven Cell Migration Pathway

    Get PDF
    Patients affected by chronic inflammatory disorders display high amounts of soluble CD95L. This homotrimeric ligand arises from the cleavage by metalloproteases of its membrane-bound counterpart, a strong apoptotic inducer. In contrast, the naturally processed CD95L is viewed as an apoptotic antagonist competing with its membrane counterpart for binding to CD95. Recent reports pinpointed that activation of CD95 may attract myeloid and tumoral cells, which display resistance to the CD95-mediated apoptotic signal. However, all these studies were performed using chimeric CD95Ls (oligomerized forms), which behave as the membrane-bound ligand and not as the naturally processed CD95L. Herein, we examine the biological effects of the metalloprotease-cleaved CD95L on CD95-sensitive activated T-lymphocytes. We demonstrate that cleaved CD95L (cl-CD95L), found increased in sera of systemic lupus erythematosus (SLE) patients as compared to that of healthy individuals, promotes the formation of migrating pseudopods at the leading edge of which the death receptor CD95 is capped (confocal microscopy). Using different migration assays (wound healing/Boyden Chamber/endothelial transmigration), we uncover that cl-CD95L promotes cell migration through a c-yes/Ca2+/PI3K-driven signaling pathway, which relies on the formation of a CD95-containing complex designated the MISC for Motility-Inducing Signaling Complex. These findings revisit the role of the metalloprotease-cleaved CD95L and emphasize that the increase in cl-CD95L observed in patients affected by chronic inflammatory disorders may fuel the local or systemic tissue damage by promoting tissue-filtration of immune cells
    • 

    corecore