2,094 research outputs found

    Spatial stochastic predator-prey models

    Full text link
    We consider a broad class of stochastic lattice predator-prey models, whose main features are overviewed. In particular, this article aims at drawing a picture of the influence of spatial fluctuations, which are not accounted for by the deterministic rate equations, on the properties of the stochastic models. Here, we outline the robust scenario obeyed by most of the lattice predator-prey models with an interaction "a' la Lotka-Volterra". We also show how a drastically different behavior can emerge as the result of a subtle interplay between long-range interactions and a nearest-neighbor exchange process.Comment: 5 pages, 2 figures. Proceedings paper of the workshop "Stochastic models in biological sciences" (May 29 - June 2, 2006 in Warsaw) for the Banach Center Publication

    Vortex Washboard Voltage Noise in Type-II Superconductors

    Full text link
    In order to characterize flux flow through disordered type-II superconductors, we investigate the effects of columnar and point defects on the vortex velocity / voltage power spectrum in the driven non-equilibrium steady state. We employ three-dimensional Metropolis Monte Carlo simulations to measure relevant physical observables including the force-velocity / current-voltage (I-V) characteristics, vortex spatial arrangement and structure factor, and mean flux line radius of gyration. Our simulation results compare well to earlier findings and physical intuition. We focus specifically on the voltage noise power spectra in conjunction with the vortex structure factor in the presence of weak columnar and point pinning centers. We investigate the vortex washboard noise peak and associated higher harmonics, and show that the intensity ratios of the washboard harmonics are determined by the strength of the material defects rather than the type of pins present. Through varying columnar defect lengths and pinning strengths as well as magnetic flux density we further explore the effect of the material defects on vortex transport. It is demonstrated that the radius of gyration displays quantitatively unique features that depend characteristically on the type of material defects present in the sample.Comment: Latex, 17 pages, 14 figure

    Planck Observations of M33

    Get PDF
    We have performed a comprehensive investigation of the global integrated flux density of M33 from radio to ultraviolet wavelengths, finding that the data between \sim100 GHz and 3 THz are accurately described by a single modified blackbody curve with a dust temperature of TdustT_\mathrm{dust} = 21.67±\pm0.30 K and an effective dust emissivity index of βeff\beta_\mathrm{eff} = 1.35±\pm0.10, with no indication of an excess of emission at millimeter/sub-millimeter wavelengths. However, sub-dividing M33 into three radial annuli, we found that the global emission curve is highly degenerate with the constituent curves representing the sub-regions of M33. We also found gradients in TdustT_\mathrm{dust} and βeff\beta_\mathrm{eff} across the disk of M33, with both quantities decreasing with increasing radius. Comparing the M33 dust emissivity with that of other Local Group members, we find that M33 resembles the Magellanic Clouds rather than the larger galaxies, i.e., the Milky Way and M31. In the Local Group sample, we find a clear correlation between global dust emissivity and metallicity, with dust emissivity increasing with metallicity. A major aspect of this analysis is the investigation into the impact of fluctuations in the Cosmic Microwave Background (CMB) on the integrated flux density spectrum of M33. We found that failing to account for these CMB fluctuations would result in a significant over-estimate of TdustT_\mathrm{dust} by \sim5 K and an under-estimate of βeff\beta_\mathrm{eff} by \sim0.4.Comment: Accepted for publication in MNRA

    Development Of The Extraction Method Of Inactive Forms Of Pectin Substances From Fruits To Easy-digestible Active Form During The Obtaining Of Nanofood

    Get PDF
    The aim of the work is development of a unique method for deep processing of fruits and vegetables with a high content of sparingly soluble pectin substances, which makes it possible to remove pectic substances from inactive form and transform them into an easily digestible active form when obtaining natural semi-finished products and food products in nanosized form. To achieve the aim, a complex effect on the raw material of steam-thermal treatment or cryogenic shock freezing and fine-dispersed grinding is used as an innovation.A new method for obtaining finely dispersed additives and health products from fruits and vegetables with a high content of biologically active substances (BAS) and prebiotic substances is developed, which is based on a complex effect on raw materials of processes of steam-thermal or cryogenic treatment of raw materials and fine-dispersed grinding, which is accompanied by destruction, mechanochemistry, non-enzymatic catalysis. It is found that when these processes are activated, pectic substances are activated, more complete extraction from raw materials (4.5 ... 7.3 times) from a latent form and transformation into a soluble form. The mechanism of these processes is disclosed, recommendations for the creation of recreational nanoproducts are developed. It is shown that, in parallel, non-enzymatic catalysis (up to 70%) of hardly soluble pectic substances in individual monomers takes place, that is, transformation into a soluble, easily digestible form.The increase and seizures of latent forms of biologically active substances in finely dispersed frozen and heat-treated purees from fruit compared with fresh raw materials is established. The increase is respectively 1.5 ... 4.0 times and 1.5 ... 3.0 times. The quality of the obtained new types of fine mashed potatoes exceeds the known analogs for BAS content and technological characteristics. New types of purees are in a nanoscale, easily digestible form.With the use of new types of finely dispersed additives, a wide range of products for health-improving nutrition has been developed with a record content of natural BASs (new types of nano-lipids, nanosorb products, milk-vegetable cocktails, fillings for confectionery and extruded products, curd desserts, bakery products, snacks - falafel, creams, etc.)

    Statistical Properties of Galactic Starlight Polarization

    Full text link
    We present a statistical analysis of Galactic interstellar polarization from the largest compilation available of starlight data. The data comprises ~ 9300 stars of which we have selected ~ 5500 for our analysis. We find a nearly linear growth of mean polarization degree with extinction. The amplitude of this correlation shows that interstellar grains are not fully aligned with the Galactic magnetic field, which can be interpreted as the effect of a large random component of the field. In agreement with earlier studies of more limited scope, we estimate the ratio of the uniform to the random plane-of-the-sky components of the magnetic field to be B_u/B_r = 0.8. Moreover, a clear correlation exists between polarization degree and polarization angle what provides evidence that the magnetic field geometry follows Galactic structures on large-scales. The angular power spectrum C_l of the starlight polarization degree for Galactic plane data (|b| < 10 deg) is consistent with a power-law, C_l ~ l^{-1.5} (where l ~ 180 deg/\theta is the multipole order), for all angular scales \theta > 10 arcmin. An investigation of sparse and inhomogeneous sampling of the data shows that the starlight data analyzed traces an underlying polarized continuum that has the same power spectrum slope, C_l ~ l^{-1.5}. Our findings suggest that starlight data can be safely used for the modeling of Galactic polarized continuum emission at other wavelengths.Comment: 31 pages, 11 figures. Minor corrections and some clarifications included. Matches version accepted for publication by the Astrophysical Journa

    An Improved Estimate of the Mass of Dust in Cassiopeia A

    Full text link
    Recent observations of sub-millimeter continuum emission toward supernova remnants (SNR) have raised the question of whether such emission is caused by dust within the SNR and thus produced by the supernova itself or along the line-of-sight. The importance of the present work is to establish evidence for the production of large amounts of dust in supernovae. The best tests can be made for young supernovae in our galaxy. Cassiopeia A is the best candidate for a measurement.Comment: 7 pages, 3 figures, accepted by A&A for publicatio

    A Multi-Layer and Multi-Tenant Cloud Assurance Evaluation Methodology

    Get PDF
    Data with high security requirements is being processed and stored with increasing frequency in the Cloud. To guarantee that the data is being dealt in a secure manner we investigate the applicability of Assurance methodologies. In a typical Cloud environment the setup of multiple layers and different stakeholders determines security properties of individual components that are used to compose Cloud applications. We present a methodology adapted from Common Criteria for aggregating information reflecting the security properties of individual constituent components of Cloud applications. This aggregated information is used to categorise overall application security in terms of Assurance Levels and to provide a continuous assurance level evaluation. It gives the service owner an overview of the security of his service, without requiring detailed manual analyses of log files

    The impact of main belt asteroids on infrared--submillimetre photometry and source counts

    Get PDF
    > Among the components of the infrared and submillimetre sky background, the closest layer is the thermal emission of dust particles and minor bodies in the Solar System. This contribution is especially important for current and future infrared and submillimetre space instruments --like those of Spitzer, Akari and Herschel -- and must be characterised by a reliable statistical model. > We describe the impact of the thermal emission of main belt asteroids on the 5...1000um photometry and source counts, for the current and future spaceborne and ground-based instruments, in general, as well as for specific dates and sky positions. > We used the statistical asteroid model (SAM) to calculate the positions of main belt asteroids down to a size of 1km, and calculated their infrared and submillimetre brightness using the standard thermal model. Fluctuation powers, confusion noise values and number counts were derived from the fluxes of individual asteroids. > We have constructed a large database of infrared and submillimetre fluxes for SAM asteroids with a temporal resolution of 5 days, covering the time span January 1, 2000 -- December 31, 2012. Asteroid fluctuation powers and number counts derived from this database can be obtained for a specific observation setup via our public web-interface. > Current space instruments working in the mid-infrared regime (Akari and Spitzer Space Telescopes) are affected by asteroid confusion noise in some specific areas of the sky, while the photometry of space infrared and submillimetre instruments in the near future (e.g. Herschel and Planck Space Observatories) will not be affected by asteroids. Faint main belt asteroids might also be responsible for most of the zodiacal emission fluctuations near the ecliptic.Comment: accepted for publication in Astronomy & Astrophysics; Additional material (appendices) and the related web-interface can be found at: "http://kisag.konkoly.hu/solarsystem/irsam.html

    Planck observations of M33

    Get PDF
    corecore