
Hudic, A., Tauber, M., Lorünser, T., Krotsiani, M., Spanoudakis, G., Mauthe, A. & Weippl, E. (2014).

A Multi-Layer and Multi-Tenant Cloud Assurance Evaluation Methodology. Paper presented at the

2014 IEEE 6th International Conference on Cloud Computing Technology and Science

(CloudCom), 15-18 Dec 2014, Singapore.

City Research Online

Original citation: Hudic, A., Tauber, M., Lorünser, T., Krotsiani, M., Spanoudakis, G., Mauthe, A. &

Weippl, E. (2014). A Multi-Layer and Multi-Tenant Cloud Assurance Evaluation Methodology. Paper

presented at the 2014 IEEE 6th International Conference on Cloud Computing Technology and

Science (CloudCom), 15-18 Dec 2014, Singapore.

Permanent City Research Online URL: http://openaccess.city.ac.uk/14403/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42630436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

© 2014 IEEE, Published at IEEE CloudCom 2014

A Multi-Layer and Multi-Tenant Cloud Assurance Evaluation Methodology
Aleksandar Hudic,
Markus Tauber,

Thomas Lorünser
AIT

{aleksandar.hudic,
markus.tauber}@ait.ac.at

Maria Krotsiani,
George Spanoudakis

City University London
{g.e.spanoudakis,

maria.krotsiani.1} @city.ac.uk

Mauthe, Andreas
Lancaster University

a.mauthe@lancaster.ac.uk

Edgar R. Weippl
SBA Research

EWeippl@sba-research.org

Abstract—Data with high security requirements is being
processed and stored with increasing frequency in the Cloud. To
guarantee that the data is being dealt in a secure manner we
investigate the applicability of Assurance methodologies. In a
typical Cloud environment the setup of multiple layers and
different stakeholders determines security properties of
individual components that are used to compose Cloud
applications. We present a methodology adapted from Common
Criteria for aggregating information reflecting the security
properties of individual constituent components of Cloud
applications. This aggregated information is used to categorise
overall application security in terms of Assurance Levels and to
provide a continuous assurance level evaluation. It gives the
service owner an overview of the security of his service, without
requiring detailed manual analyses of log files.

Keywords — critical infrastructures, assurance, cloud

I. INTRODUCTION

An important transformation process in IT systems is
currently taking place triggered by the rapid propagation of the
Cloud Computing paradigm across distinct domains and
organisations. Hence it is envisaged that ICT services will in
future be delivered in a manner similar to utilities such as
water, electricity, gas, and telephony. The main motivation for
adopting Cloud technology is to increase efficiency and
minimize IT costs by offering new concepts such as elasticity,
scalability and on-demand resource provisioning. However, in
order to automatically provision resources for elastically
adaptive Cloud applications it requires both, the applications
and the underlying platform to be constantly monitored to
capture information at various system and operational levels
and time intervals. This is particularly manifested in Critical
Infrastructures, which require even more attention when these
systems are hosted on top of Cloud environments.

However, the use of Cloud computing has introduced new
risks that have to be sufficiently understood before an
organisation should consider adopting the Cloud and using
Cloud services. Moreover, due to the complexity of the
application execution environment, routine tasks such as
monitoring or security analysis becomes quite complex. These
tasks often require close interaction and assessment between
different layers of the Cloud stack. For example, certain
distributed applications running within a Cloud cluster on
specific virtual machine(s) (VM) require a general assurance,
or even have to be certified, for maintaining specific security
properties. This might also require monitoring the execution of
the application on the VMs, as well as monitoring the

availability of the physical resources of the VMs. Thus, this
would require the use of different tool sets to collect and
analyse the performance of data from each level in order to
reach the point where the application can be certified.

Under these circumstances, we should gather different
types of information at various levels of granularity, from low-
level system metrics (e.g. CPU usage, network traffic, memory
allocation, etc.) to high-level application specific metrics (e.g.
throughput, latency, availability, etc.). These are collected
across multiple system layers (physical, virtualization,
application level) in a Cloud environment at different time
intervals. Hence, the challenge in this case is to define a way to
aggregate these different types of information from different
levels in order to provide an overall assurance, and determine
how changes in individual assurance levels of every
component affects the overall assurance.

In this paper, we propose, based on existing work[10] an
assurance method. We refer to assurance, motivated by
common criteria, as the likelihood for a service falling victim
to a cyber-attack. A high assurance level means a low
probability for this to happen. Security properties, based on
measurable metrics, of substituent components contribute to
the overall assurance level and how they are aggregated is
subject to dependency policies. This is based on a
comprehensive concept for assessing security properties across
multiple layers with different stakeholders for composite based
systems. The dependency policies, can be flexibly adopted
according to various use case requirements to derive evaluation
of every individual component of a service or a system.

The rest of the paper is structured as follows. Section II
outlines the related work. Section III describes our approach
and introduces the Assurance Assessment Method, the way we
define assurance levels, how we abstract the service as a
general tree, and the assurance aggregation process. In Section
IV the evaluation of the approach is provided based on a Use
Case Scenario. Finally, section V provides concluding remarks
and directions for future work.

II. RELATED WORK

Traditional approaches for assurance assessment in the
Cloud, such as Cloud Security Alliance (CSA) [12],
Information Technology Assurance Framework (ITAF) [17],
or the Cloud Computing Information Assurance Framework
from ENISA [18], are usually built on existing frameworks
such as ISO/IEC 27000-series (e.g. current work in progress
ISO/IEC 27017 and ISO/IEC 27018 which are focusing on

information security and data protection in Cloud), PCI DSS
Cloud Guideline [13], COBIT [14], NIST [16], or IT Baseline
Protection Catalogues [15].

We have considered existing approaches, namely the
Common Criteria framework [6] for assurance of IT systems
(as it is the most dominant work in the field) and extends it
[10] since its main focus is on assessing assurance in the
development phase of the life cycle but lacks support in the
subsequent production phase.

 Unlike traditional approaches, the work derived from
Krotsiani et.al. [11] proposes a novel approach for certifying
the security of Cloud services based on incremental
certification of security properties for different types of Cloud
services (including IaaS, PaaS and SaaS services). This
approach uses operational evidence from the services
provisioning through continuous monitoring. Although the
model does not directly address assurance as an explicit
objective, it can be adopted to efficiently assess assurance at
various levels and time intervals.

Our approach is related to autonomic monitoring systems
that are based on the SECCRIT architecture model [7] and on
an evidence-gathering model for assurance assessment in
critical infrastructures hosted on top of Cloud environments (as
introduced in [8]). Moreover, we found the concepts of
Common Criteria for analysing and assessing application in
preproduction phases. However, we emphasize the importance
of observing systems in their production phase, as well as their
dependencies with other corresponding elements inside of
heterogeneous systems1

III. MULTI LAYER ASSURANCE ASSESMENT MODEL

. The popular National Institute of Standards and
Technology (NIST) [3] model depicts the Cloud architecture
through a dynamic tree-layered service-provisioning model
(infrastructure, platform and software - as a Service layer)
capable of scaling services across distinct administrative and
legislative domains. However, the common practices for
provisioning and delivering services (as well as the abstraction
of those layers and driven technologies) differentiates based on
the business objectives of a particular Cloud provider. Hence,
the traditional assessment frameworks (e.g. COBIT, ISO
27000 series) are not fully applicable, especially when
addressing security related concerns in Cloud environments (as
discussed in [10]).

However, in order to build a comprehensive and flexible
framework that is able to acquire heterogeneous information
across the Cloud stack the following objectives have to be
addressed:  cross layer assessment  technology independence  information acquisition restrictions  assessment, quantification and aggregation of

different information sets

1 It should be noted that our work is a part of a broader research programme,
undertaken by the EU F7 project SECCRIT [4]

The assessment of such services when taking into account
different Cloud layers requires a compact solution, able to
embrace all requirements and produce an effective assessment
tool. Especially when considering different stakeholders,
various business and security objectives, a high degree of
service complexity, business model, and distinct technologies.
Hence, we adopt Common Criteria [6] to address assurance in
Cloud related environments. Although, Common Criteria
offers a comprehensive solution for assurance assessment, it
lacks support for the production phase, especially when
referring to those services that are hosted on top of the Cloud
architectures. Taking this and the above-mentioned objectives
into account, we use the Common Criteria approach in order to
address assurance assessment of complex services hosted in
Cloud infrastructures. Furthermore, the policies of some Cloud
providers restrict information crawling across their Cloud stack
(for instance software as a service Cloud provider will hesitate
to reveal the information of underlying service being provided,
in order to mitigate potential attack vectors on its
infrastructure). Hence it is harder to analyse, indicate or predict
security issues in such environments. Thus, we distinguish two
main categories: a) solutions based on open-source Cloud
environments (i.e. solutions where we are able to freely acquire
necessary information without restrictions); and b) closed
Cloud environments with restricted information access (i.e.
public Cloud providers which provide any additional
information via the Service Level Agreements (SLA)
[21][22]). Due to the flexibility of acquiring the information
and ability to modify services for provisioning the information,
this paper focuses primarily on open-source Cloud solutions
(e.g. OpenStack [23], CloudStack [24]). This does, however,
not limit our approach to these environments.

The assessment and aggregation of different information
sets (i.e. analysis of a particular entity in the Cloud with
respect to a specific set of properties) is derived from the
concept of assurance levels, supported through aggregation
policies (i.e. decision making algorithms that cluster the
security properties of each class towards the predefined
assurance levels), aligned with the Common Criteria approach
[6].

A. Assurance assesment method

Considering these objectives and building on the research
presented in [10] we propose a comprehensive and flexible
approach for performing assurance assessment. The approach
is using a well-defined set of security properties, provided by
the CUMULUS project [5]. These are additionally aligned with
the SECCRIT vulnerability catalogue [20] and The Notorious
Nine from Cloud Security Alliance [19].

 Our assessment method emphasises three core assessment
entities: Target of Evaluation (ToE), Group of Evaluation
(GoE) and Component of Evaluation (CoE). These entities are
aligned with the Common Criteria assessment framework, and
are therefore designed to offer flexibility, determination of the
precise impact of the individual components or group of
components, scalability of assessment across different time

intervals, and the possibility to highlight each individual entity
of the system as an independent point of evaluation.
Furthermore, we designed our method as a hierarchical tree
structure defined with parent-child object relationship. Each
parent can be in a direct relationship with multiple child
objects. The parent object that does not have any related child
objects is referred to as leaf object. Additionally, we also
define associations, dependencies, associated component sets
and assurance profiles, as supporting assessment elements of
the ToE. Figure 1 illustrates the fundamental elements of our
Assurance Assessment Method. More specifically, it presents
how a particular service can be abstracted through a set of
hierarchically organized components. We use these abstraction
elements to build our method and to efficiently assess
assurance according to a predefined set of security properties
derived from the CUMULUS project.

The initial step of the assessment method defines and
details the ToE. This can be either an asset of the Cloud
referred to as service (e.g. a specific service operation, a set of
service operations, data managed by the service) or an asset
that is required or contributes to the realization of a Cloud
service (e.g., a virtual machine).

Moreover, each ToE contains a set of attributes such as: (i)
security objectives, which are mapped towards the related set
of security claims and are formally referred to as Security
Properties (SP); (ii) attributes that define the type of assurance
(e.g. information or system assurance) according to the
assurance model presented in [10]; (iii) a short description of
the ToE; and (iv) the assessment interval. The security
objectives are the statements of intent to counter the identified
threats by IT measures. Each ToE can be formally defined as
ToE ≡ T = {COEi, i ∈ N} | {GOEi, i ∈ N} . This generalized

statement as presented in Figure 1 can be formulated as ToE ≡
COEA = {COEi, i ∈ ۃB, C, D, E, F, G, H, I, Jۄ}. The group of
objects, formally referred as Group of Evaluation (GoE) and
defined as GoE = {CoEi, i ∈ N} , are a compound set of
individual objects that share common properties based on
which the assessment is conducted. Considering Figure 1, GoE
can be formulated as compound of objects, e.g. GOE1 =
{COEi, i ∈ ۃF, H, I, Jۄ}. Each individual object to which we
refer to as the component of evaluation (CoE) can be also
handled as an independent ToE. Each GoE is composed of (i)
attributes, used for describing a particular group; (ii) assurance
profile, which is the essential element for evaluation; (iii)
associations, an element used to describe relationships between
different groups in the scope of the evaluated target; and (iv)
individual components.

Component Dependency (CD) is a correlation between two
individual components of the evaluated system (i.e where CDij
{ ({i, j ∈N ,ۄCOEi , COEjۃ , that arises when a component is not
self-sufficient and relies upon the presence of another
component, e.g. when referring to Figure 1 CDCG={COEC,
COEG} . Association is a set of two individual components that
are in a direct parent-child relationship with a defined
dependency, for which it is valid: ∀ ASi i ∈ N ≡ !׌ CDij { ۃCOEi , COEjۄ, i, j ∈N} ⟹ COEi parent of COEj. An
individual parent object can be associated with N distinct child
objects, which we formally refer to as Associated Component
Set (ACS), for which the following statements are valid: ACSK ≔ ACS (COEK) = {COEi, i ∈ N} , ∀ COEi ⟹ !׌ Parent =
COEK and ׍ CDij { {i, j ∈ N ,ۄCOEi , COEjۃ .

Last but not least, the Assurance profile (AP), an essential
element in our method used to define policy related with
security properties that are mapped to the Assurance classes
(AC) of a particular CoE or GoE. These security properties
will at the end define the level of assurance for an individual
component, group or even a whole system. We emphasize two
types of Assurance profiles setup: Uniform Assurance Profile
(APU), which is always the same regardless of class, evaluated
object, group or target; and Custom Assurance Profile (APP),
which can be customised depending on the object of appliance.
In Table 1 we illustrated the APU for a particular assurance
class. Furthermore, we can also assign a custom Assurance
Profile to a particular CoE, GoE or ToE.

B. Assurance Levels

 Assurance levels (AL) outline the scale of measurement
for evaluating predefined ToE, GoE or CoE. Every individual
CoE or GoE contributes directly to the assurance level of the
ToE by meeting a set of SPs (i.e. a certain set of security
criteria). Moreover, the SPs derive the AL per individual AC
by also taking into consideration the dependencies of the
evaluated object, e.g. component, group or target of evaluation
if such are present. However, each AC may contain k of SP (k
number of SPs) as shown in equations (5) and (6). Due to the
binary decision making concept applied in our approach there
can be 2k combinations of distinct SP states where 2k > N, and
N is the cardinality of AL, in terms of security properties (AL=

Figure 1: Hierarchical illustration of services via the general tree model
structure. The service or application is defined as a Target of Evaluation (ToE)
depicted with the individual Components of Evaluation (CoE), whereby each
individual CoE can be associated with N distinct CoEs, referred as Associated
Component Set (ACS). The correlation between two individual CoEs is
referred to as a Component Dependency, which is a formal compound of
Association. Moreover, CoEs are grouped in order to establish assurance of
components with respect to specifc security classes, these groups are then
formally defined as Groups of Evaluation (GoE).

{1, 2, 3, 4 … N}). Thus, each individual combinations of SPs
{SP1, SP 2, SP3, SP4 … SPN}, associated with a particular AC,
are formally referred to as Security Property Vector (SPV)
(equations (3, (4, (5, (6). Security Property Vector defines the
current state of an object by identifying particular set of
security properties. Each SPV, is associated with a particular
assurance class, whereby each class can comprise multiple
SPVs. Thus, in order to scale 2k states over N assurance levels,
we encode ranges in hexadecimal vectors that cluster a
potential set of states that correspond to a particular SPV, as
shown in Table 1. Hence, each individual AL is assigned with
multiple SPVs, which are formally referred as Vector Set (VS),
(equation (2)).

Table 1 presents an example of Assurance profile for a
particular Assurance class. More specifically, it illustrates a set
of relevant SPs clustered per individual ACK represented with
a hexadecimal vector. The left hand side of the table shows the
SPVs, sorted by relevance, and all potential combinations for a
particular security vector SPV = [SP4, SP3, SP2, SP1]. The right
hand side shows a binary vector for ALi (i ∈ {1, 2, 3 … 7}),
which associates particular set of SV vectors. At the bottom of
the table the Hexadecimal representation of each particular
binary AL vector is illustrated.
Table 1 Assurance level association for a particular assurance class. Set of
relevant SPVs clustered per individual ACK represented with a hexadecimal
vector. The left hand side of the table shows the SPVs, sorted per relevance,
and all potential appearance combinations for a particular vector SPV = [SP4,
SP3, SP2, SP1]. The right hand side shows a binary vector for ALi, i ∈ {1, …
7}, which associates particular set of SV vectors. At the bottom of the table the
Hexadecimal representation of each particular binary AL vector is illustrated.

Security
Property Vector

(SPV)
Assurance level association

SP4 SP3 SP2 SP1 AL AL1 AL2 AL3 AL4 AL5 AL6 AL7
0 0 0 0 - 0 0 0 0 0 0 0
0 0 0 1 AL1 1 0 0 0 0 0 0
0 0 1 0 AL2 0 1 0 0 0 0 0
0 0 1 1 AL2 0 1 0 0 0 0 0
0 1 0 0 AL3 0 0 1 0 0 0 0
0 1 0 1 AL3 0 0 1 0 0 0 0
0 1 1 0 AL4 0 0 0 1 0 0 0
0 1 1 1 AL4 0 0 0 1 0 0 0
1 0 0 0 AL5 0 0 0 0 1 0 0
1 0 0 1 AL5 0 0 0 0 1 0 0
1 0 1 0 AL6 0 0 0 0 0 1 0
1 0 1 1 AL6 0 0 0 0 0 1 0
1 1 0 0 AL7 0 0 0 0 0 0 1
1 1 0 1 AL7 0 0 0 0 0 0 1
1 1 1 0 AL7 0 0 0 0 0 0 1
1 1 1 1 AL7 0 0 0 0 0 0 1
Hexadecimal AL vector 0002 000C 0030 00C0 0300 0C00 7000

For each individual AC that is associated with a set of
SPVs particular SP (part of SPV) may vary. Nevertheless,
every individual AC, regardless of the SPs, always has to have
the same cardinality k (equation (5)). In order to efficiently
aggregate the assurance across the variety of architectural
layers, ACs first has to fulfil the equations (5) and (6), stating
that regardless of the AC, none of the SPs can be associated
with more than one AC (equation (7)).

 Although, we abstract ALs over N levels, for the purpose
of our empirical evaluation we will conduct the assessment
over 7 ALs, therefore having minimum 3 SP per AC to be able
to map all assurance levels with SPVs. Depending on the
property set that a particular entity (i.e. class component, group
or even a whole target of evaluation) is assigned with and due
to the dynamic behaviour of the Cloud the AL will also be
dynamic and vary. Hence, it is crucial to efficiently assess the
assurance in a continuous manner without impacting on the
performance of the evaluated service or collocated services.

C. Assurance Aggregation

As mentioned above, we propose a concept for the
assurance aggregation through a recursive process, which
aggregates the individual assurance levels of the underlying
associated objects (i.e. it calculates the overall assurance of the
components that are associated with the root component). The
overall assurance can be derived by applying the method
depicted in Figure 1. Further, by conducting the proposed
algorithm described in Figure 4 we can then derive the overall
assurance. Therefore by referring to Figure 1, we state the
CoEA as the ToE. Since, the CoEA is associated with two
additional components, CoEB and CoEC, which represent the
associated components set (ACSA) of the CoEA and are
additionally connected with other components. The overall
assurance in this case has to be recursively aggregated from the

leafs of the tree (i.e. by aggregating all ACS (ACSB, ACSC and
ACSF). Therefore we will use tree traversal post order method
to iteratively walk through the tree. For the first use case, we
just refer to the concept of the tree traversal post order method
as a tool for our concept. This method is slightly extended by
integrating our Assurance Level Calculation Procedure
(ALCP) from Figure 3 using recursively aggregate assurance.

The assurance level of the referenced ACS (ACSF, ACSB

and ACSC, respectively), by applying the ALCP aligned with
the equation (8). The procedure sequentially conducts bitwise
conjunction of individual SPs for each CoE across each ACS.
Depending on the result of conjunction (1 or 0) it is decided if
all SPVs are discarded with the bit that matches the result of
the conjunction. For example, by discarding certain SPVs we
are indirectly discarding those ALs that are not fulfilling the

∀ALK ∈ ACX: !׌ VS, (1)
VS = {SPV1, SPV2 … SPVN}, (2)

SPVi= [SP1, SP2, SP3, SP4], SPi = {0,1} (3) ∀VS ∈ ALK : ׌ SPVi, i ∈ℕ (4) ∀ SPVi ∈ ACX: |SPVi| = k (5)
ACX= {SPV1, SPV2, SPV3, … SPVn} (6) ⋂

(7)

ACSAL = ⍝ACX (SPVi) , ACX ∈ CoEM, i ∈ {1…N} (8)
ACSAL(i) ⊢ DALVS(i) (9)

ALVS ⊆ DALVS (10)
 (DALVS(i) ∧ ALVS(i)) ⇒ AL(ACX)=i, ACX ∈ CoEM (11)

AL ׌! i ⊧ ∀Min(CAL j) i∈ {1…7}, j∈ {1…N} (12)

current set of SPs for particular ACS. The next step is to map
the suitable ACSAL, according to the Table 2, towards the
appropriate DALVS. The DALVS is not only used for mapping
the calculated ACSAL, but also to customize the underlying
security properties of a particular AL. Finally, we calculate the
AL of the root CoE for a particular ACS, equation (9),
depending on the SPs that the CoE corresponds to the AL of
the ACS whereby the equations (10) and have to be fulfilled.
However, in case of multiple ACs per CoE we have to consider
equation (12) where we consider the AL of individual ACs to
determine consolidated ALs for a CoE.
Table 2: Assurance Level per distinct Assurance classes depicted with
Hexadecimal vectors. We define minimal assurance level requirements
(DALVS) of the objects that are in direct relationship with the parent object. It
also defines the assurance level requirements per level of the parent object
itself, ALVS. Additionally we define the minimum requirement for each AC in
terms of AL, i.e. we define at which assurance level individual AC has to
satisfy to define the overall assurance of the object. In case when we have
multiple AC to consider in order to derive the overall AL we use the
Consolidated Assurance Level (CAL).

ASSURANCE LEVEL I II III IV V VI VII N

AC1

ALVS 0002 0008 0010 0080 0C00 7000 8000 8000

DALVS 0002 0004 0030 00C0 0D00 3000 C000 8000

CAL - AL1 AL2 AL3 AL5 AL6 AL7 ALN

AC2

ALVS 0002 0008 0020 0040 0300 1800 4000 8000

DALVS 0004 0018 0020 00C0 0300 1C00 6000 8000

CAL - AL1 AL3 AL4 AL5 AL6 AL7 ALN

AC3

ALVS 0002 000C 0010 00C0 0200 0C00 4000 8000

DALVS 0006 0004 0030 01C0 0200 1C00 6000 8000

CAL AL1 AL2 AL3 AL4 AL5 AL5 AL6 ALN

ACN

ALVS 0006 000C 0030 00C0 0D00 1C00 7000 8000

DALVS 0006 000C 0030 00C0 0D00 1C00 7000 8000

CAL AL1 AL2 AL3 AL4 AL5 AL5 AL7 ALN

D. General Tree Model

A general tree G is a finite compound set of nodes such that
there is only one designated node R, referred as root of the tree
G, where each individual node has only one ancestor (Parent)
node, with exception of the root, and multiple successors

(Children). Each node of the tree is defined by two properties:
Depth and Degree. Depth of the node is the distance of the
node from the root node, and Degree of the node is the number
of successors for a particular node. Moreover, each general tree
can be partitioned in n > 0 disjoint subsets T0, T1, T2 … Tn-1,
where each is a tree whose roots R0, R1, R2 … Rn-1 are children
of the tree G. The subset Ti (0 ≤ i ≥ n) is a subset of the trees
of T.

Although we intent to depict our services through a general
based tree model, they can be also depicted via the binary tree
model, since the general tree model is easily transformed to A
binary tree. For demonstrational purpose of our algorithm
(Figure 3) we will use the general tree model. Since the model
can be easily transformed, our implementation can be adopted
to apply the algorithm on binary trees as well. However, we
will not address the assessment of binary trees as it exceeds the
scope of this work.

IV. EVALUATION

The introduced approach is evaluated and explained in
more details using two scenarios. As first step, the cyber-risks
that exist in the use case scenario have to be understood
alongside the security properties that need to be assessed and
certified.

Perceptions of risk in the context of Cloud computing have
to be well understood since they will inevitably influence
decisions about the adoption of Clouds or the security controls
that will be applied to them. Two important factors that must
be taken into consideration for a better understanding of cyber-
security risks are: (i) the threats and their likelihood to occur;
and (ii) the vulnerabilities and an indication of their severity. A
key challenge when understanding the risks associated with
Cloud computing is to determine those that are specific to the
use of Clouds.

Figure 2: Evaluation use cases derived with respect to the SECCRIT [4] case studies. The subfigure (a) illustrates the basic model of a general tree where the
depth of the tree is one and the degree is N. This is an initial model where the algorithm introduced in Figure 3calculates iteratively the conjunction of SPV bits
to determine the overall assurance of the leaves of ACS for CoEi, i ∈ {B,C,D…N} and aggregates towards root according the policies defined in Table 2 and

equations (8, (9, (10, (11, (12). Although this is straight forward, in subfigure (b), the same process is aligned with the post-order traversal method,

which at the end aggregates the Assurance towards the root COEA.

(a) (b)

Therefore, in order to comprehend the Cloud-specific risks
of our scenario we use the Cloud vulnerability catalogue the
SECCRIT project [4] has developed, in which we then mapped
the Notorious Nine Top threats from CSA [1]. Further, with
the help of the CUMULUS project’s security property
catalogue [2], we map these vulnerabilities to possible security
properties for their assessment. The basis of this catalogue is
the identification of a number of categories that enable us to
focus directly on Cloud-related issues. The core of these
categories is based on the NIST essential Cloud computing
characteristics [3].

Figure 3: Assurance level calculation procedure (ALCP) for associated objects
used in equation (8). The procedure does the bitwise conjunction of the most
significant bit and based on the result decides whether to discard the SPV that
have 0 or 1 assigned to a particular bit that is being analysed. Furthermore,
during each iteration, the procedure checks if the remaining vectors that define
a particular component are a subset of one of the vector sets associated to a
particular ALi, as shown in Table 1, for a particular ACk

A. Use Caseses

The aim of the evaluation is to illustrate a real world
scenario via the abstraction of a general tree model. This is
used to assure the public safety of critical infrastructure
services and assesses the assurance according to a set of
security classes/properties. We refer in particular to the case
studies from the SECCRIT project [4] in order to abstract our
approach and make a proof of concept assessment algorithm.

To demonstrate our algorithm we abstract a service via the
use case scenarios explained below. Moreover, we
implemented our assurance algorithm in Java so we can
randomly define properties of evaluation such as depth of a
tree, degree of a node, security property vector bit length.
Furthermore, our implementation method is founded on post-
order tree traversal model in order to efficiently evaluate the
assurance of service by traversing the tree to aggregate security
in respect to assurance policies.

For the first use case scenario, the Depth (D1) of the tree T1
is 1, meaning that we have only a root with a set of children,
Degree (D2) will be N, generated randomly, as shown in
(Figure 2 (a)). In the second use case both degree and depth
properties are predefined, e.g. D1=3 and D2=3 (Figure 2 (b)).
Within the second use case we want to demonstrate the

application of our algorithm in a more complex general tree,
which would illustrate the service more realistically.

B. Security Properties, Vulnerabilities and Threats

The SECCRIT case studies consider mainly risks related to
the authorisation of users, data storage and data leakage. In
Figure 4 we present the architecture of the system with
components in different levels, as well as their dependencies.
Moreover, some relevant security properties are mapped to
each component that needs to be certified in order to assure the
whole service.

Figure 4: Identified set of Security Properties across various architecture layers
of the Cloud environment, mapped towards the SECCRIT vulnerability
catalogue and CUMULUS property catalogue. Due to the fact that both
catalogues enumerate large number of properties we only illustrated most
representative ones for time being and will provide more detailed catalogue in
our further work.

Table 3 presents a number of security properties that are
relevant for the case study, their security property category, as
well as the vulnerabilities and threats that are related to each of
them. Moreover, the dependencies between these properties are
also provided according to Figure 4. From this list we have
selected four properties, e.g. SP_7, SP_4, SP_6 and SP_1 to
proceed to the evaluation of our approach, as a starting point of
our on-going research on multi-layer assurance dependencies
policies.

C. Scenario based assessment

To demonstrate the approach we distinguish two specific
use cases: the fundamental general tree model (illustrated in
Figure 2- a) and the advanced tree model (illustrated in Figure
2- b). Both models illustrate a service through a general tree
model, where each individual node represents a standalone
entity of the particular service that is being evaluated.
Furthermore, we use our set of identified security properties to
demonstrate our approach by distinguishing the four most
relevant properties SP_7, SP_4, SP_6 and SP_1 assigning them
as SP4, SP3, SP2 and SP1 respectively. We implemented a

begin procedure:

for i=k … i=ɨ do
if (∀ CoEC (SPV[i]) ׌! ALM, M ∈ {ɨ,ɩ,…,7}) {

AL = M;

end procedure
}

else if (∏ Co ሺ [i]ሻ) {

discard ∀ SPV where SPV[i] =1;
continue;

}

else (∏ Co ሺ [i]ሻ) {

discard ∀ SPV where SPV[i] =0;
continue;

}
end procedure

random bit vector generator that generates four bit sets,
regardless of the use case, and associates them with individual
SPV for a particular object.

For the evaluation of our first use case scenario we
illustrate a general tree model for each COEi, i ∈ {B, C,
D…N} generated SPV [SP4, SP3, SP2, SP1], as shown in Table
4 (a). We use the traversal post order method to recursively
assess the use case scenarios.

Table 3: Security Properties, Vulnerabilities & Threats

ID
Security
Property

Category Vulnerability Threats Depen
dencies

SP_1

User
Authenticatio
n and Identity

assurance
level

Identity
Assurance

Loss of human-
operated control point
to verify security and

privacy settings

Data Breaches
Data Loss

Shared Technology
Vulnerabilities

None
Insufficient

authentication security,
e.g., weak

authentication
mechanisms, on the
Cloud management

interface

Account or Service
Traffic Hijacking

Insecure Interfaces
and APIs

Malicious Insiders

SP_2

Data deletion
quality level

Data Disposal Data recovery
vulnerabilities, e.g.,

unauthorised access to
data in memory or on
disk from previous

users

Data Breaches
Account or Service
Traffic Hijacking

Insecure Interfaces
and APIs

Malicious Insiders
Insufficient Due

Diligence

None

SP_3

Storage
Freshness

Durability

SP_4

Data
alteration

prevention /
detection

Integrity Poor/ no integrity
checks of the billing

information

Data Breaches
Insecure Interfaces

and APIs
Insufficient Due

Diligence

SP_1,
SP_2,
SP_3

SP_5

Storage
Retrievability

Durability Poor/ no backup &
restore strategy is in

place to prevent the loss
of billing information,
e.g., in the case of a

system failure

Data Breaches
Insecure Interfaces

and APIs
Insufficient Due

Diligence

SP_4

SP_6

Data leakage
detection /
prevention

Data Leakage Poor/ no encryption of
the VM data through a
wide-area migration

process

Data Breaches
Malicious Insiders
Shared Technology

Vulnerabilities

SP_5

SP_7

Cryptographi
c module
protection
level

Key
Management

Unmonitored and
unencrypted network

traffic between VMs is
possible, e.g., for VMs

on the same node
through virtual network
Unencrypted physical
storage, which is the

underlying for allocated
virtual storage of the

VMs

Insufficient Due
Diligence

Shared Technology
Vulnerabilities
Data Breaches

Malicious Insiders None

SP_8
Percentage of
Up Time

Availability

Poor/ no implemented
QoS (Quality of

Service) services, e.g.,
to guarantee connection
bandwidth required by

the Cloud user.
Only one ISP
connection is
considered for

operation

Insufficient Due
Diligence

Shared Technology
Vulnerabilities

SP_6

Poor/ no failover
mechanism, e.g., in

case of losing one out
of two ISP connections

Missing redundant
power connection leads

to a higher risk of
losing power

Denial of Service

Due to the simplicity of the first use case scenario the traversal
post order method only determines the sequence of the
evaluated objects, which is {B, C, D … N} since we have a
one-level deep tree. Consolidating this with our procedural
algorithm from Figure 3 we conduct bitwise conjunction. In
particular we start by conducting the procedure illustrated in
equation (8) and implemented in our algorithm in Figure 3 on
the SP4. The result of this is 0. This indicates that according to

Table 1 we discard all potential combination that fulfil SP4
(upper eight combination 8-15) and reduce to 3-bit vector set
for further evaluation. Our next sequential step, applies the
same process on SP3 resulting also to 0, which also lead to the
same outcome, but reducing it into 2-bit vector. The next
iteration for the SP3 resulted to 1 that maps the remaining bit
vector sets towards the assurance level two, therefore making
the last bit irrelevant for the assurance since both potential
outcomes (0 and 1) would lead towards assurance level two.
Hence, the final vector, according to Table 1, associates the
underlying Associated component set (ACS) of the root node
with AL=2 is SPV = [001X]. This process is derived for each
AC until we derive the final SPVi for each ACi. The final
aggregation towards the root is defined with equation (8),
which leverages the policies of Table 2 to decide whether both
conditions of the DALVS and ALVS are satisfied to determine
the root assurance level (the equations (9, (10 and (11 have to
be fulfilled.), In this particular case this is CoEA(AL)=2.
However, in case of multiple ACs it has to be also checked
weather for each AC the minimum CAL is satisfied to fulfil a
particular AL, as stated in Table 2 and defined by equation
(12).

 Table 4: Randomly generated SPV per individual CoE for demonstrating our
algorithm Figure 3, via the use cases from Figure 2. Left table (a) is referring
to the first use case scenario, Figure 2 (a), and table (b) refers to the second use
case scenario Figure 2 (b).

 (a) (b)

To evaluate the second use case, i.e. the advanced tree

model (see Figure 2- b), we generate for each COEi, i ∈ {A, B,
C, D…N} SPVi Table 4 (b). Due to the fact that the first use
case tree is a subset of the tree in the second use case, we can
apply the whole process conducted in the first use case
scenario iteratively, until we aggregate the assurance towards
the root. Therefore, in order to avoid redundancy we will just
refer to the process explained in the first use case and extend it
accordingly. The traversal post order method in the second use
case, Figure 2 .b has the following sequence {D, F, L, M, N, G,
B, H, C, I, J, K, D, A}. Therefore we marked 5 steps in Figure
2 b that illustrate this procedure. The first step will aggregate

 SP4 SP3 SP2 SP1
CoEA 0 1 1 1
 CoEB 0 1 1 0
CoEC 0 0 1 0
CoED 0 0 1 1
CoEN 1 0 1 0

 SP4 SP3 SP2 SP1
CoEA 0 1 1 0
CoEB 1 0 0 0
CoEC 1 0 1 0
CoED 1 0 1 1
CoEE 0 1 0 1
CoEF 0 1 1 0
CoEG 1 0 0 1
CoEH 0 1 1 0
CoEI 1 0 0 0
CoEJ 1 0 0 0
CoEK 1 0 1 1
CoEL 0 1 0 0
CoEM 0 1 1 1
CoEN 0 1 0 1

the assurance for ACSG = (COEi, i ∈ {L, M, N}) with the
ALCP procedure which results in CoEG(AL) = [010X]. Then,
as second step, when the Assurance level of CoEG has been
reached we aggregate the assurance of ACSB = (COEi, i ∈ {E,
F, G}), e.g. CoEB(AL) = [0110]. The third step determines the
assurance level of CoEC directly according to one child node
CoEH, CoEH(AL)=[0110]. The fourth step aggregates the
assurance level of ACSD = (COEi, i ∈ {I, J, K}) ,
CoED(AL)=[1001]. Finally the last step of the assessment
process is to aggregate the assurance level of ToEAL = ACSA =
(COEi, i ∈ {B, C, D}), where CoED(AL)=[0110], by fulfilling
the equations (9, (10 and (11 leads to the overall assurance of
AL=4. However, just as in the first use case scenario, if dealt
with multiple assurance class we have to use equation (12 to
derive the final consolidated AL for a particular CoE.

V. CONCLUSION AND FUTURE WORK

In this paper we present an assurance methodology for
Cloud security properties. This will support Cloud users in
simplifying the assessment on whether a specific security level
(i.e. assurance level) of a service can be maintained despite
churn in the substitute components. The method supports
multi-tenant environments and multi-layer environments. The
scheme has been applied to two scenarios. This theoretic
evaluation method shows efficient application of the proposed
assurance assessment method over the use case where we
demonstrate how services can be assessed according to a set of
security properties with a defined set of policies.

Based on this work the next steps will provide a complete
assurance class and security property catalogue that
comprehensively covers the different aspects of Cloud
environments. Furthermore, we are planning to use real-world
applications from the SECCRIT and CUMULUS projects and
benchmark them using the introduced scheme. As far as the
model itself is concerned we will also further investigate the
use of a binary tree model instead of the currently used general
tree model, since we can easily transform a general tree to a
binary tree model in order to empirically evaluate the
performance of our algorithm.

ACKNOWLEDGMENT

The research presented in this paper has been funded by the
European Commission, in the context of two Seventh
Framework Programme (FP7) projects, the SECCRIT (Grant
No. 312758) and the CUMULUS (Grant No. 318580).

REFERENCES
[1] CSA, “The notorious nine: Cloud computing top threats in 2013”, v.1.0,

Cloud Security Alliance, February 2013, available from:
http://cloudsecurityalliance.org/research/top-threats/ [retrieved: April
2014]

[2] CUMULUS project, http://www.cumulus-project.eu/

[3] P. Mell and T. Grance: The NIST Definition of Cloud Computing.
Technical Report Special Publication 800-145, National Institute of
Standards and Technology (NIST), September 2011.

[4] SECCRIT project, https://seccrit.eu/

[5] CUMULUS Deliverable “D2.1 Security-aware SLA specification
language and cloud security dependency model v1.01”, September 2013.
Available from http://www.cumulus-project.eu/.

[6] Common Criteria (CC) for Information Technology Security Evaluation,
CCDB USB Working Group, 2012, part 1-3. [Online]. Available:
http://www.commoncriteriaportal.org.

[7] Scholler, M., Bless, R., Pallas, F., Horneber, J., & Smith, P. (2013,
December) “An Architectural Model for Deploying Critical
Infrastructure Services in the Cloud“, Cloud Computing Technology and
Science (CloudCom), 2013 IEEE 5th International Conference on (Vol.
1, pp. 458-466). IEEE.

[8] Florian, M., Paudel, S., & Tauber, M. (2013, December), “Trustworthy
evidence gathering mechanism for multilayer cloud compliance”,
Internet Technology and Secured Transactions (ICITST), 2013 8th
International Conference for (pp. 529-530). IEEE.

[9] S. Paudel, Tauber, M., and Brandic, I., “Towards Taxonomy based
Software Security Standard and Tool Selection for Critical Infrastructure
IT in the Cloud”, The 8th International Conference for Internet
Technology and Secured Transactions (ICITST-2013), 2013.

[10] A. Hudic, T. Hecht, M. Tauber, A. Mauthe and S. E. Cáceres, "Towards
Continuous Cloud Service Assurance for Critical Infrastructure IT", The
2nd International Conference on Future Internet of Things and Cloud
(FiCloud-2014), 2014

[11] M. Krotsiani, G. Spanoudakis, and K. Mahbub, “Incremental certification
of cloud services,” in SECURWARE 2013, The Seventh International
Conference on Emerging Security Information, Systems and
Technologies, 2013, p. 7280.

[12] Cloud Security Alliance, Cloud Controls Matrix, Available from:
https://cloudsecurityalliance.org/research/ccm/

[13] Payment Card Industry Data Security Standard (PCI DSS) Cloud
Computing Guidelines, Available from:
https://www.pcisecuritystandards.org/security_standards/documents.php?
document=dss_cloud_computing_guidelines

[14] COBIT, IT Assurance Guide: Using COBIT, Control Objectives for
Information and related Technology, 2007, information Systems Audit
and Control Association.

[15] IT Baseline Protection Catalogs, Available from:
http://www.bsi.de/gshb/index.htm

[16] National Institute of Standards and Technology, "Information Security
Handbook: A Guide for Managers," NIST Special Publication 800-100,
October 2006.

[17] ITAF, Information Technology Assurance Framework, 2nd ed.,
Information Systems Audit and Control Association, 2013.

[18] ENISA, Cloud Computing Information Assurance Framework, 1st ed.,
European Union Agency for Network and Information Security, 2009.
Available from:http://www.enisa.europa.eu/

[19] Top Threats Working Group. "The Notorious Nine: Cloud Computing
Top Threats in 2013." Cloud Security Alliance (2013).

[20] Jerry Busby, Lucie Langer, Marcus Schöller, Noor Shirazi and Paul
Smith Deliverable: 3.1: "Methodology for Risk Assessment and
Management", 2013, Available online:
https://www.seccrit.eu/upload/D3-1-Methodology-for-Risk-Assessment-
and-Management.pdf

[21] Patel, Pankesh, Ajith H. Ranabahu, and Amit P. Sheth. "Service level
agreement in cloud computing." (2009).

[22] Buyya, Rajkumar, Chee Shin Yeo, and Srikumar Venugopal. "Market-
oriented cloud computing: Vision, hype, and reality for delivering it
services as computing utilities." HPCC'08. 10th IEEE International
Conference on. Ieee, 2008.

[23] OpenStack, http://www.openstack.org/

[24] CloudStack, http://cloudstack.apache.org/

http://cloudsecurityalliance.org/research/top-threats/
http://www.cumulus-project.eu/
https://seccrit.eu/
http://www.cumulus-project.eu/
https://cloudsecurityalliance.org/research/ccm/
https://www.pcisecuritystandards.org/security_standards/documents.php?document=dss_cloud_computing_guidelines
https://www.pcisecuritystandards.org/security_standards/documents.php?document=dss_cloud_computing_guidelines
http://www.bsi.de/gshb/index.htm
https://www.seccrit.eu/upload/D3-1-Methodology-for-Risk-Assessment-and-Management.pdf
https://www.seccrit.eu/upload/D3-1-Methodology-for-Risk-Assessment-and-Management.pdf
http://www.openstack.org/

