22 research outputs found

    Thermal equation of state and thermodynamic properties of iron carbide Fe 3 C to 31 GPa and 1473 K

    Full text link
    Resent experimental and theoretical studies suggested preferential stability of Fe 3 C over Fe 7 C 3 at the condition of the Earth's inner core. Previous studies showed that Fe 3 C remains in an orthorhombic structure with the space group Pnma to 250 GPa, but it undergoes ferromagnetic (FM) to paramagnetic (PM) and PM to nonmagnetic (NM) phase transitions at 6–8 and 55–60 GPa, respectively. These transitions cause uncertainties in the calculation of the thermoelastic and thermodynamic parameters of Fe 3 C at core conditions. In this work we determined P‐V‐T equation of state of Fe 3 C using the multianvil technique and synchrotron radiation at pressures up to 31 GPa and temperatures up to 1473 K. A fit of our P‐V‐T data to a Mie‐Gruneisen‐Debye equation of state produce the following thermoelastic parameters for the PM‐phase of Fe 3 C: V 0  = 154.6 (1) Å 3 , K T 0 = 192 (3) GPa, K T ′ = 4.5 (1), γ 0 = 2.09 (4), θ 0  = 490 (120) К, and q  = −0.1 (3). Optimization of the P‐V‐T data for the PM phase along with existing reference data for thermal expansion and heat capacity using a Kunc‐Einstein equation of state yielded the following parameters: V 0  = 2.327 cm 3 /mol (154.56 Å 3 ), K T 0  = 190.8 GPa, K T ′ = 4.68, Θ E10  = 305 K (which corresponds to θ 0  = 407 K), γ 0  = 2.10, e 0  = 9.2 × 10 −5 K −1 , m  = 4.3, and g  = 0.66 with fixed parameters m E 1  = 3 n  = 12, γ ∞  = 0, β  = 0.3, and a 0  = 0. This formulation allows for calculations of any thermodynamic functions of Fe 3 C versus T and V or versus T and P . Assuming carbon as the sole light element in the inner core, extrapolation of our equation of state of the NM phase of Fe 3 C suggests that 3.3 ± 0.9 wt % С at 5000 К and 2.3 ± 0.8 wt % С at 7000 К matches the density at the inner core boundary. Key Points We present a P‐V‐T EOS for PM‐Fe 3 C with support from thermodynamic analyses We discuss uncertainties in magnetic transitions We applied EOS data for modeling carbon content in the corePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101805/1/jgrb50396.pd

    Epileptic Focus in Drug-Resistant Epilepsy: Structure, Organization, and Pathophysiology

    Get PDF
    The chapter focuses on how different cutting-edge techniques can be used to study electrophysiological, pathomorphological, and biochemical changes in the “epileptic focus” area of the cerebral cortex and white matter to see how epileptic seizures become drug-resistant and how it affects the other regions of the brain. The authors highlight the significance of neuroinflammation and apoptosis in the epilepsy pathogenesis providing EEG characteristics and describing structural changes in the cortex and white matter under such conditions as focal cortical dysplasia and epileptic leukoencephalopathy. Particular focus is given to structural and functional changes in the hippocampus and the role of hippocampal sclerosis in epilepsy. Key conceptions regarding the epileptic focus formation are outlined

    Data from a pre-publication independent replication initiative examining ten moral judgement effects

    Get PDF
    We present the data from a crowdsourced project seeking to replicate findings in independent laboratories before (rather than after) they are published. In this Pre-Publication Independent Replication (PPIR) initiative, 25 research groups attempted to replicate 10 moral judgment effects from a single laboratory's research pipeline of unpublished findings. The 10 effects were investigated using online/lab surveys containing psychological manipulations (vignettes) followed by questionnaires. Results revealed a mix of reliable, unreliable, and culturally moderated findings. Unlike any previous replication project, this dataset includes the data from not only the replications but also from the original studies, creating a unique corpus that researchers can use to better understand reproducibility and irreproducibility in science

    The pipeline project: Pre-publication independent replications of a single laboratory's research pipeline

    Get PDF
    This crowdsourced project introduces a collaborative approach to improving the reproducibility of scientific research, in which findings are replicated in qualified independent laboratories before (rather than after) they are published. Our goal is to establish a non-adversarial replication process with highly informative final results. To illustrate the Pre-Publication Independent Replication (PPIR) approach, 25 research groups conducted replications of all ten moral judgment effects which the last author and his collaborators had “in the pipeline” as of August 2014. Six findings replicated according to all replication criteria, one finding replicated but with a significantly smaller effect size than the original, one finding replicated consistently in the original culture but not outside of it, and two findings failed to find support. In total, 40% of the original findings failed at least one major replication criterion. Potential ways to implement and incentivize pre-publication independent replication on a large scale are discussed

    Creative destruction in science

    Get PDF
    Drawing on the concept of a gale of creative destruction in a capitalistic economy, we argue that initiatives to assess the robustness of findings in the organizational literature should aim to simultaneously test competing ideas operating in the same theoretical space. In other words, replication efforts should seek not just to support or question the original findings, but also to replace them with revised, stronger theories with greater explanatory power. Achieving this will typically require adding new measures, conditions, and subject populations to research designs, in order to carry out conceptual tests of multiple theories in addition to directly replicating the original findings. To illustrate the value of the creative destruction approach for theory pruning in organizational scholarship, we describe recent replication initiatives re-examining culture and work morality, working parents\u2019 reasoning about day care options, and gender discrimination in hiring decisions. Significance statement It is becoming increasingly clear that many, if not most, published research findings across scientific fields are not readily replicable when the same method is repeated. Although extremely valuable, failed replications risk leaving a theoretical void\u2014 reducing confidence the original theoretical prediction is true, but not replacing it with positive evidence in favor of an alternative theory. We introduce the creative destruction approach to replication, which combines theory pruning methods from the field of management with emerging best practices from the open science movement, with the aim of making replications as generative as possible. In effect, we advocate for a Replication 2.0 movement in which the goal shifts from checking on the reliability of past findings to actively engaging in competitive theory testing and theory building. Scientific transparency statement The materials, code, and data for this article are posted publicly on the Open Science Framework, with links provided in the article

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Data from a pre-publication independent replication initiative examining ten moral judgement effects

    Get PDF
    We present the data from a crowdsourced project seeking to replicate findings in independent laboratories before (rather than after) they are published. In this Pre-Publication Independent Replication (PPIR) initiative, 25 research groups attempted to replicate 10 moral judgment effects from a single laboratory's research pipeline of unpublished findings. The 10 effects were investigated using online/lab surveys containing psychological manipulations (vignettes) followed by questionnaires. Results revealed a mix of reliable, unreliable, and culturally moderated findings. Unlike any previous replication project, this dataset includes the data from not only the replications but also from the original studies, creating a unique corpus that researchers can use to better understand reproducibility and irreproducibility in science.Link_to_subscribed_fulltex

    The pipeline project: Pre-publication independent replications of a single laboratory's research pipeline

    Get PDF
    © 2015 The Authors This crowdsourced project introduces a collaborative approach to improving the reproducibility of scientific research, in which findings are replicated in qualified independent laboratories before (rather than after) they are published. Our goal is to establish a non-adversarial replication process with highly informative final results. To illustrate the Pre-Publication Independent Replication (PPIR) approach, 25 research groups conducted replications of all ten moral judgment effects which the last author and his collaborators had âin the pipelineâ as of August 2014. Six findings replicated according to all replication criteria, one finding replicated but with a significantly smaller effect size than the original, one finding replicated consistently in the original culture but not outside of it, and two findings failed to find support. In total, 40% of the original findings failed at least one major replication criterion. Potential ways to implement and incentivize pre-publication independent replication on a large scale are discussed.Link_to_subscribed_fulltex
    corecore