18 research outputs found

    A newly identified virus in the family potyviridae encodes two leader cysteine proteases in tandem that evolved contrasting RNA silencing suppression functions

    Get PDF
    Potyviridae is the largest family of plant-infecting RNA viruses and includes many agriculturally and economically important viral pathogens. The viruses in the family, known as potyvirids, possess single-stranded, positive-sense RNA genomes with polyprotein processing as a gene expression strategy. The N-terminal regions of potyvirid polyproteins vary greatly in sequence. Previously, we identified a novel virus species within the family, Areca palm necrotic spindle-spot virus (ANSSV), which was predicted to encode two cysteine proteases, HCPro1 and HCPro2, in tandem at the N-terminal region. Here, we present evidence showing self-cleavage activity of these two proteins and define their cis-cleavage sites. We demonstrate that HCPro2 is a viral suppressor of RNA silencing (VSR), and both the variable N-terminal and conserved C-terminal (protease domain) moieties have antisilencing activity. Intriguingly, the N-terminal region of HCPro1 also has RNA silencing suppression activity, which is, however, suppressed by its C-terminal protease domain, leading to the functional divergence of HCPro1 and HCPro2 in RNA silencing suppression. Moreover, the deletion of HCPro1 or HCPro2 in a newly created infectious clone abolishes viral infection, and the deletion mutants cannot be rescued by addition of corresponding counterparts of a potyvirus. Altogether, these data suggest that the two closely related leader proteases of ANSSV have evolved differential and essential functions to concertedly maintain viral viability.This work is supported by grants from the Hainan Major Research Fund of Science and Technology (ZDKJ201817), the National Natural Science Foundation of China (32060603), and the Central Public-interest Scientific Institution Basal Research Fund for the Chinese Academy of Tropical Agricultural Sciences (grant no. 19CXTD-33).Peer reviewe

    Curcumin loaded pH-sensitive hybrid lipid/block copolymer nanosized drug delivery systems

    Get PDF
    Curcumin is a perspective drug candidate with pleiotropic antineoplastic activity, whose exceptionally low aqueous solubility and poor pharmacokinetic properties have hampered its development beyond the preclinical level. A possible approach to overcome these limitations is the encapsulation of curcumin into nano-carriers, incl. liposomes. The present contribution is focused on feasibility of using hybrid pH-sensitive liposomes, whereby curcumin is entrapped as a free drug and as a water soluble inclusion complex with PEGylated tert-butylcalix[4]arene, which allows the drug to occupy both the phospholipid membranes and the aqueous core of liposomes. The inclusion complexes were encapsulated in dipalmithoylphosphathydilcholine:cholesterol liposomes, whose membranes were grafted with a poly(isoprene-b-acrylic acid) diblock copolymer to confer pH-sensitivity. The liposomes were characterized by DLS, ζ-potential measurements, cryo-TEM, curcumin encapsulation efficacy, loading capacity, and in vitro release as a function of pH. Free and formulated curcumin were further investigated for cytotoxicity, apoptosis-induction and caspase-8, and 9 activation in chemosensitive HL-60 and its resistant sublines HL-60/Dox and HL-60/CDDP. Formulated curcumin was superior cytotoxic and apoptogenic agent vs. the free drug. The mechanistic assay demonstrated that the potent proapoptotic effects of pH-sensitive liposomal curcumin presumably mediated via recruitment of both extrinsic and intrinsic apoptotic pathways in both HL-60 and HL-60/CDDP cells

    Curcumin loaded pH-sensitive hybrid lipid/block copolymer nanosized drug delivery systems

    Get PDF
    Curcumin is a perspective drug candidate with pleiotropic antineoplastic activity, whose exceptionally low aqueous solubility and poor pharmacokinetic properties have hampered its development beyond the preclinical level. A possible approach to overcome these limitations is the encapsulation of curcumin into nano-carriers, incl. liposomes. The present contribution is focused on feasibility of using hybrid pH-sensitive liposomes, whereby curcumin is entrapped as a free drug and as a water soluble inclusion complex with PEGylated tert-butylcalix[4]arene, which allows the drug to occupy both the phospholipid membranes and the aqueous core of liposomes. The inclusion complexes were encapsulated in dipalmithoylphosphathydilcholine:cholesterol liposomes, whose membranes were grafted with a poly(isoprene-b-acrylic acid) diblock copolymer to confer pH-sensitivity. The liposomes were characterized by DLS, ζ-potential measurements, cryo-TEM, curcumin encapsulation efficacy, loading capacity, and in vitro release as a function of pH. Free and formulated curcumin were further investigated for cytotoxicity, apoptosis-induction and caspase-8, and 9 activation in chemosensitive HL-60 and its resistant sublines HL-60/Dox and HL-60/CDDP. Formulated curcumin was superior cytotoxic and apoptogenic agent vs. the free drug. The mechanistic assay demonstrated that the potent proapoptotic effects of pH-sensitive liposomal curcumin presumably mediated via recruitment of both extrinsic and intrinsic apoptotic pathways in both HL-60 and HL-60/CDDP cells

    Selection and Application of Materials in Chemical Machinery Design

    No full text
    Materials used in the design of chemical machinery are an indispensable part of industrial production, and chemical machinery materials are also the main basis of chemical production.Chemical mechanical properties can directly determine the quality of products in chemical production, and their materials also determine the quality of chemical mechanical properties. Selecting corresponding materials has become the core of chemical mechanical design.Therefore, in the design of chemical machinery, there is a special value for the selection of materials used in manufacturing

    Scattered Reddish-brown Nodules on the Head in an Elderly Man: A Quiz

    No full text
    Abstract is missing (Quiz
    corecore