132 research outputs found

    Melanoma-initiating cells exploit M2 macrophage TGFβ and arginase pathway for survival and proliferation

    Get PDF
    International audienceM2 macrophages promote tumor growth and metastasis, but their interactions with specific tumor cell populations are poorly characterized. Using a mouse model of spontaneous melanoma, we showed that CD34 -but not CD34 + tumor-initiating cells (TICs) depend on M2 macrophages for survival and proliferation. Tumor-associated macrophages (TAMs) and macrophage-conditioned media protected CD34 -TICs from chemotherapy in vitro. In vivo, while inhibition of CD115 suppressed the macrophage-dependent CD34 -TIC population, chemotherapy accelerated its development. The ability of TICs to respond to TAMs was acquired during melanoma progression and immediately preceded a surge in metastatic outgrowth. TAM-derived transforming growth factor-β (TGFβ) and polyamines produced via the Arginase pathway were critical for stimulation of TICs and synergized to promote their growth

    Angptl4 Protects against Severe Proinflammatory Effects of Saturated Fat by Inhibiting Fatty Acid Uptake into Mesenteric Lymph Node Macrophages

    Get PDF
    SummaryDietary saturated fat is linked to numerous chronic diseases, including cardiovascular disease. Here we study the role of the lipoprotein lipase inhibitor Angptl4 in the response to dietary saturated fat. Strikingly, in mice lacking Angptl4, saturated fat induces a severe and lethal phenotype characterized by fibrinopurulent peritonitis, ascites, intestinal fibrosis, and cachexia. These abnormalities are preceded by a massive acute phase response induced by saturated but not unsaturated fat or medium-chain fat, originating in mesenteric lymph nodes (MLNs). MLNs undergo dramatic expansion and contain numerous lipid-laden macrophages. In peritoneal macrophages incubated with chyle, Angptl4 dramatically reduced foam cell formation, inflammatory gene expression, and chyle-induced activation of ER stress. Induction of macrophage Angptl4 by fatty acids is part of a mechanism that serves to reduce postprandial lipid uptake from chyle into MLN-resident macrophages by inhibiting triglyceride hydrolysis, thereby preventing macrophage activation and foam cell formation and protecting against progressive, uncontrolled saturated fat-induced inflammation

    Impaired skin wound healing in peroxisome proliferator–activated receptor (PPAR)α and PPARβ mutant mice

    Get PDF
    We show here that the α, β, and γ isotypes of peroxisome proliferator–activated receptor (PPAR) are expressed in the mouse epidermis during fetal development and that they disappear progressively from the interfollicular epithelium after birth. Interestingly, PPARα and β expression is reactivated in the adult epidermis after various stimuli, resulting in keratinocyte proliferation and differentiation such as tetradecanoylphorbol acetate topical application, hair plucking, or skin wound healing. Using PPARα, β, and γ mutant mice, we demonstrate that PPARα and β are important for the rapid epithelialization of a skin wound and that each of them plays a specific role in this process. PPARα is mainly involved in the early inflammation phase of the healing, whereas PPARβ is implicated in the control of keratinocyte proliferation. In addition and very interestingly, PPARβ mutant primary keratinocytes show impaired adhesion and migration properties. Thus, the findings presented here reveal unpredicted roles for PPARα and β in adult mouse epidermal repair

    Regulation of epithelial–mesenchymal IL-1 signaling by PPARβ/δ is essential for skin homeostasis and wound healing

    Get PDF
    Skin morphogenesis, maintenance, and healing after wounding require complex epithelial–mesenchymal interactions. In this study, we show that for skin homeostasis, interleukin-1 (IL-1) produced by keratinocytes activates peroxisome proliferator–activated receptor β/δ (PPARβ/δ) expression in underlying fibroblasts, which in turn inhibits the mitotic activity of keratinocytes via inhibition of the IL-1 signaling pathway. In fact, PPARβ/δ stimulates production of the secreted IL-1 receptor antagonist, which leads to an autocrine decrease in IL-1 signaling pathways and consequently decreases production of secreted mitogenic factors by the fibroblasts. This fibroblast PPARβ/δ regulation of the IL-1 signaling is required for proper wound healing and can regulate tumor as well as normal human keratinocyte cell proliferation. Together, these findings provide evidence for a novel homeostatic control of keratinocyte proliferation and differentiation mediated via PPARβ/δ regulation in dermal fibroblasts of IL-1 signaling. Given the ubiquitous expression of PPARβ/δ, other epithelial–mesenchymal interactions may also be regulated in a similar manner

    Destabilization of β Cell FIT2 by saturated fatty acids alter lipid droplet numbers and contribute to ER stress and diabetes

    Get PDF
    Western-type diets are linked to obesity and diabetes partly because of their high–saturated fatty acid (SFA) content. We found that SFAs, but not unsaturated fatty acids (USFAs), reduced lipid droplets (LDs) within pancreatic β cells. Mechanistically, SFAs, but not USFAs, reduced LD formation by inducing S-acylation and proteasomal, mediated degradation of fat storage–inducing transmembrane protein 2 (FIT2), an endoplasmic reticulum (ER) resident protein important for LD formation. Targeted ablation of FIT2 reduced β cell LD numbers, lowered β cell ATP levels, reduced Ca(2+) signaling, dampened vesicle exocytosis, down-regulated β cell transcription factors, up-regulated unfolded protein response genes, and finally, exacerbated diet-induced diabetes in mice. Subsequent mass spectrometry studies revealed increased C16:0 ceramide accumulation in islets of diet-induced diabetes mice lacking β cell FIT2. Inhibition of ceramide synthases ameliorated the enhanced ER stress and improved insulin secretion. FIT2 was reduced in mouse diabetic islets, and separately, overexpression of FIT2 increased the number of intracellular LDs and rescued SFA-induced ER stress and apoptosis, thereby highlighting the protective role of FIT2 and LDs against β cell lipotoxicity

    <i>Neisseria</i> species as pathobionts in bronchiectasis

    Get PDF
    Neisseria species are frequently identified in the bronchiectasis microbiome, but they are regarded as respiratory commensals. Using a combination of human cohorts, next-generation sequencing, systems biology, and animal models, we show that bronchiectasis bacteriomes defined by the presence of Neisseria spp. associate with poor clinical outcomes, including exacerbations. Neisseria subflava cultivated from bronchiectasis patients promotes the loss of epithelial integrity and inflammation in primary epithelial cells. In vivo animal models of Neisseria subflava infection and metabolipidome analysis highlight immunoinflammatory functional gene clusters and provide evidence for pulmonary inflammation. The murine metabolipidomic data were validated with human Neisseria-dominant bronchiectasis samples and compared with disease in which Pseudomonas-, an established bronchiectasis pathogen, is dominant. Metagenomic surveillance of Neisseria across various respiratory disorders reveals broader importance, and the assessment of the home environment in bronchiectasis implies potential environmental sources of exposure. Thus, we identify Neisseria species as pathobionts in bronchiectasis, allowing for improved risk stratification in this high-risk group.Published versio

    ROS release by PPARβ/δ-null fibroblasts reduces tumor load through epithelial antioxidant response.

    Get PDF
    Tumor stroma has an active role in the initiation, growth, and propagation of many tumor types by secreting growth factors and modulating redox status of the microenvironment. Although PPARβ/δ in fibroblasts was shown to modulate oxidative stress in the wound microenvironment, there has been no evidence of a similar effect in the tumor stroma. Here, we present evidence of oxidative stress modulation by intestinal stromal PPARβ/δ, using a FSPCre-Pparb/d &lt;sup&gt;-/-&lt;/sup&gt; mouse model and validated it with immortalized cell lines. The FSPCre-Pparb/d &lt;sup&gt;-/-&lt;/sup&gt; mice developed fewer intestinal polyps and survived longer when compared with Pparb/d &lt;sup&gt;fl/fl&lt;/sup&gt; mice. The pre-treatment of FSPCre-Pparb/d &lt;sup&gt;-/-&lt;/sup&gt; and Pparb/d &lt;sup&gt;fl/fl&lt;/sup&gt; with antioxidant N-acetyl-cysteine prior DSS-induced tumorigenesis resulted in lower tumor load. Gene expression analyses implicated an altered oxidative stress processes. Indeed, the FSPCre-Pparb/d &lt;sup&gt;-/-&lt;/sup&gt; intestinal tumors have reduced oxidative stress than Pparb/d &lt;sup&gt;fl/fl&lt;/sup&gt; tumors. Similarly, the colorectal cancer cells and human colon epithelial cells also experienced lower oxidative stress when co-cultured with fibroblasts depleted of PPARβ/δ expression. Therefore, our results establish a role for fibroblast PPARβ/δ in epithelial-mesenchymal communication for ROS homeostasis

    Highlights of the 2nd International Symposium on Tribbles and Diseases: Tribbles tremble in therapeutics for immunity, metabolism, fundamental cell biology and cancer

    Get PDF
    The Tribbles (TRIB) family of pseudokinase proteins has been shown to play key roles in cell cycle, metabolic diseases, chronic inflammatory disease, and cancer development. A better understanding of the mechanisms of TRIB pseudokinases could provide new insights for disease development and help promote TRIB proteins as novel therapeutic targets for drug discovery. At the 2nd International Symposium on Tribbles and Diseases held on May 7‒9, 2018 in Beijing, China, a group of leading Tribbles scientists reported their findings and ongoing studies about the effects of the different TRIB proteins in the areas of immunity, metabolism, fundamental cell biology and cancer. Here, we summarize important and insightful overviews from 4 keynote lectures, 13 plenary lectures and 8 short talks that took place during this meeting. These findings may offer new insights for the understanding of the roles of TRIB pseudokinases in the development of various diseases

    THE GENOMIC ORGANIZATION AND REGULATION OF OREOCHROMIS AUREUS ESTROGEN RECEPTOR GENE

    No full text
    Ph.DDOCTOR OF PHILOSOPH

    Communication among TAKl, Smad3 and PPAR β/δ and their impact on skin development.

    No full text
    Wound healing is a complex process that consists of a cascade of overlapping events, including inflammation reepithelialization and remodeling, directed at the restoration of the epidermal barrier. The regulation of wound repair is dictated by epithelial-mesenchymal interactions and purportedly mediated by the action of central players such as growth factors. This complex interplay demands the expression of soluble factors exerting autocrine and paracrine activities and, importantly, the integration of such diverse signals, which culminate in appropriate cellular responses. Aberrations to this signaling network may impair or enhance cell migration and proliferation, leading to insufficient or excessive wound repair and lifethreatening consequences such as tumor growth and metastasis. Although the importance of epithelial-mesenchymal communication is well realized, dissecting the signaling network has been difficult. It is imperative that we investigate the model at a situation where the different cell types of cells were not in isolation but could communicate with each other. Moreover, the usual 2-dimensional cell culture and the presence of serum in the growth medium, which do not reflect the in vivo situation, would inevitably distort our understanding. It should also be noted that with the exception of blood and endothelial cells, all remaining cell types in the living body never come in contact with serum but its exudates.ARC 8/0
    corecore