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SUMMARY

Dietary saturated fat is linked to numerous chronic
diseases, including cardiovascular disease. Here we
study the role of the lipoprotein lipase inhibitorAngptl4
in the response to dietary saturated fat. Strikingly, in
mice lacking Angptl4, saturated fat induces a severe
and lethal phenotype characterized by fibrinopurulent
peritonitis, ascites, intestinal fibrosis, and cachexia.
These abnormalities are preceded by amassive acute
phase response induced by saturated but not unsatu-
rated fat or medium-chain fat, originating in mesen-
teric lymph nodes (MLNs). MLNs undergo dramatic
expansion and contain numerous lipid-laden macro-
phages. In peritoneal macrophages incubated with
chyle, Angptl4 dramatically reduced foam cell
formation, inflammatory gene expression, and chyle-
induced activation of ER stress. Induction of macro-
phage Angptl4 by fatty acids is part of a mechanism
that serves to reduce postprandial lipid uptake from
chyle into MLN-resident macrophages by inhibiting
triglyceride hydrolysis, thereby preventing macro-
phage activation and foam cell formation and protect-
ing against progressive, uncontrolled saturated fat-
induced inflammation.

INTRODUCTION

Studies indicate that elevated saturated fat consumption is

associated with increased risk for chronic diseases, including

cardiovascular disease and type 2 diabetes. However, the

underlying mechanisms and why specifically saturated fat is

harmful largely remain unknown. Consequently, there is a need
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to better understand the molecular mechanisms that govern

the response to dietary (saturated) fat ingestion.

After digestion of dietary fat, absorbed long-chain fatty acids

are incorporated into chylomicrons as triglycerides (TG) and

released into the circulation after passage through the intestinal

lymphatics. Hydrolysis of chylomicron-TG is catalyzed by the

enzyme lipoprotein lipase (LPL), which is anchored to the capil-

lary endothelium via heparin-sulfate proteoglycans and is a key

determinant of cellular fatty acid uptake (Merkel et al., 2002).

LPL is expressed at high levels in tissues that depend on fatty

acids as fuel (heart, skeletal muscle) or synthesize fats for

storage or secretion (adipose tissue, mammary tissue), but

high expression is also found in macrophages (Ostlund-Lindqv-

ist et al., 1983; Wang and Eckel, 2009).

Activity of LPL is governed via numerous mechanisms that act

primarily at the posttranscriptional and posttranslational level.

One important modulator of LPL activity is Angiopoietin-like

protein 4 (Angptl4) (Yoshida et al., 2002). Angptl4 was discov-

ered as a transcriptional target of the peroxisome proliferator-

activated receptor a and g and is expressed in numerous cell

types including adipocytes, hepatocytes, (cardio)myocytes,

and endothelial cells (Kersten et al., 2000; Yoon et al., 2000).

Studies using different transgenic mouse models of Angptl4

overexpression or deletion show that Angptl4 potently raises

plasma TG levels by suppressing LPL-mediated clearance of

plasma TG-rich lipoproteins (Koster et al., 2005; Mandard

et al., 2006; Xu et al., 2005).

Recently it was shown that deletion of other members of the

Angiopoietin-like protein family influences the development of

obesity-related complications in the C57Bl/6 mouse high-fat-

induced obesity model. Specifically, surviving Angptl6�/� mice

developedmarked obesity, ectopic fat storage, and insulin resis-

tance. In contrast, mice overexpressing Angptl6 were leaner and

had improved insulin sensitivity (Oike et al., 2005). Deletion of

Angptl2 ameliorated adipose tissue inflammation and insulin

resistance in obese mice, whereas Angptl2 overexpression
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promoted adipose tissue inflammation and systemic insulin

resistance (Tabata et al., 2009). Given the role of Angptl4 in

plasma clearance of dietary TG, we set out to study the effect

of Angptl4 deletion in the context of chronically elevated dietary

fat intake.

RESULTS

Angptl4–/– Mice Fed HFD Develop Fibrinopurulent
Peritonitis and Ascites
To examine the effect of Angptl4 on diet-induced obesity and its

metabolic consequences, wild-type (WT) and Angptl4�/� mice

were fed a high-fat diet (HFD) containing saturated fat-rich palm

oil and compared with mice fed a low-fat diet (LFD) (see Table S1

available online). As expected based on its ability to inhibit LPL,

Angptl4�/� mice had decreased plasma TG (Figure 1A) and

showed faster initial weight gain (Figure 1B) (Voshol et al., 2009).

Remarkably, bodyweights of Angptl4�/� mice fed HFD reached

a plateau after around 12 weeks and declined thereafter (Fig-

ure 1B). The decrease in bodyweight was related to anorexia

noticeable after about 10weeks ofHFD (Figure 1C). AllAngptl4�/�

mice fed HFD ultimately die anywhere between 15 and 25 weeks.

The cause of death was identified by an animal pathologist as

severe fibrinopurulent peritonitis connected with ascites.

Large amounts of fibrin exudate covered the abdominal

organs in Angptl4�/� mice fed a HFD (Figure 1D). Other macro-

scopic abnormalities included intestinal fibrosis (Figure 1E),

a compressed liver (Figure S1A), and a hyperplastic spleen

(data not shown). No such abnormalities were observed in

Angptl4�/� mice fed LFD, even at high age (>1.5 years). Routine

clinical tests were performed on the ascites fluid, which varied in

color from purulent white to purulent red (Figure 1D, inset).

Ascites white blood cell count was extremely high in all animals

(25.5–34.1*109/L, diagnostic threshold <0.5*109/L), as was the

endotoxin concentration (50–120 EU/mL, zero threshold),

strongly suggesting bacterial peritonitis. Ascites fluid of some

animals tested positive for E. coli. The high protein concentration

(3.43–4.28 g/dL, diagnostic threshold >2.5 g/dL) and low serum-

ascites albumin gradient (SAAG, 0.11–0.34 g/dL, diagnostic

threshold <1.1 g/dL) indicated exudative ascites, thereby

excluding portal hypertension. The ascites TG concentration

was highly variable but clearly elevated (4.8–75.5mM, diagnostic

threshold �1.25 mM). Analysis of chylous ascites fluid by lipo-

protein profiling indicated an abundance of TG-rich lipoproteins

representing chylomicrons, as shown by immunostaining for

apoB (Figure 1F), suggesting leakage of chyle from lymphatic

vessels. Additionally, significant vascular leakage occurred, as

shown by the much lower protein concentration in chyle

(1.38–1.83 g/dL) compared to ascites fluid (3.43–4.28 g/dL).

Plasma endotoxin levels were significantly elevated in

Angptl4�/� mice fed HFD for 19 weeks (Figure 1G). Microscopic

examination indicated that the fibrin exudate contained an abun-

dance of foam cells, polynuclear giant cells, and other leukocytes

(data not shown). The same cells as well as focal lymphocyte infil-

trates were observed in the small intestine (Figure 2A, inset) and

mesenteric fat (Figure 2B), in the former encapsulated by collagen

(Figure 2C). Intestinal lymph vessels were dilated, suggesting

mesenteric lymphatic obstruction (Figure 1H). Epididymal adipose

tissue had a red appearance (Figure S1C) and exhibited coagula-
Cell M
tion necrosis and steatitis as shown by presence of lymphocytes,

granulocytes, and other leukocytes (Figure S1D, inset).

Livers of Angptl4�/� mice fed HFD for 19 weeks were not

fibrotic but resembled an ischemic liver. Portal triads, cords,

and sinusoids were poorly visible, and clumping of nuclei was

seen, indicating collapse of liver (Figures S1A and S1B). Focal

infiltrates of neutrophils, eosinophils, and macrophages were

observed (Figure S1B, inset), as were rod-shaped bacteria. Liver

fat was almost absent, whereas it was elevated in Angptl4�/�

mice on LFD (Figure S1E). Weights of liver and epididymal fat

pads were significantly lower in Angptl4�/� mice after 19 weeks

of HFD (Figures S1F and S1G), while epididymal fat pads were

heavier in Angptl4�/� mice on the LFD. Taken together,

Angptl4�/� mice chronically fed HFD develop a severe pheno-

type characterized by anorexia, cachexia, intestinal inflamma-

tion and fibrosis, chylous ascites, and fibrinopurulent peritonitis,

leading to the death of the animal.

Ascites and Other Clinical Abnormalities Are
Not Related to a Primary Lymph Vessel Defect
Angptl4�/� mice on a mixed genetic background were reported

to die shortly after birth due to defective separation of intestinal

lymphatic and blood microvasculature (Backhed et al., 2007).

Although we did not find these abnormalities in Angptl4�/�

mice on pure C57Bl/6 background and adult Angptl4�/� mice

in proper Mendelian ratios were obtained, one might suspect

an underlying primary weakness in intestinal lymphatics that

becomes manifest when chyle flow is increased, as observed

upon high-fat feeding, causing leakage of chyle into intestinal

lumen and peritoneal cavity. However, none of the clinical abnor-

malities including chylous ascites were observed in Angptl4�/�

mice fed a safflower oil-based HFD rich in polyunsaturated fat

(Table S2) (data not shown). Furthermore, if lymphatic vessels

are intrinsically more permeable, ascites and diarrhea, the latter

due to loss of protein and fat from lymph into the intestinal lumen,

should develop upon starting the HFD, which was not observed.

Surprisingly, fecal fat excretion was markedly decreased in

Angptl4�/� mice, indicating more efficient fat absorption (Fig-

ure S2A). An acute intestinal lipid absorption test using 3H-triolein

and 14C-palmitic acid failed to show any differences in rate of

appearance of either label in blood between WT and Angptl4�/�

mice (Figures S2B and S2C), suggesting chylomicron formation

and release is similar between WT and Angptl4�/� mice. In

contrast, in all intestinal parts, accumulation of both labels 5 hr

after lipid load was markedly higher in Angptl4�/� mice (Figures

S2D and S2E). The similarity in results between 3H-triolein and
14C-palmitic acid argue against an effect of Angptl4 inactivation

on TG digestion but suggest enhanced fatty acid uptake into en-

terocytes. This is supported by elevated expression of target

genes of PPARa in small intestine ofAngptl4�/�mice, suggesting

enhanced gene regulation by fatty acids (Figures S2F and S2G).

Overall, the data argue against a primary lymph vessel defect

forming the basis for the severe pathology.

A Massive Acute Phase Response Precedes Ascites
in Angptl4–/– Mice Fed HFD
To investigate the cause of the severe pathology, WT and

Angptl4�/� mice were studied before onset of anorexia and

cachexia at 8 weeks of HFD (Figures 1A and 1B), and before
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Figure 1. Angptl4–/– Mice Chronically Fed HFD Develop Fibrinopurulent Peritonitis and Ascites
(A) Four hour fasting plasma TG levels during the course of chronic LFD or HFD intervention (study 1). Differences between LFD and HFD within each genotype

were not statistically significant. n = 10 per group.

(B) Bodyweight changes in WT and Angptl4�/� mice fed LFD or HFD for 19 weeks.

(C) Mean daily food intake in WT and Angptl4�/� mice fed LFD or HFD for 19 weeks.

(D)Whole-animal photographs taken immediately following sacrifice of representativeWT andAngptl4�/�mice fed either LFD or HFD for 19weeks. Pictures at far

right were taken after removal of peritoneum. Ascites fluid collected from two Angptl4�/� mice fed HFD is shown at the bottom.

(E) Photograph of small intestine of WT and Angptl4�/� mice fed LFD or HFD for 19 weeks.

(F) FLPC lipoprotein profiling of ascites fluid of Angptl4�/� mice fed HFD for 19 weeks (n = 5). (Inset) apoB immunoblot of FPLC fractions from ascites fluid of

Angptl4�/� mice or mouse fasting plasma (FP).

(G) Plasma endotoxin levels in WT and Angptl4�/� mice fed LFD or HFD for 19 weeks.

(H) Lymph vessel area in jejunum of WT and Angptl4�/� mice fed LFD or HFD for 19 weeks determined after Lyve-1 staining. Error bars represent SEM. Asterisk

indicates significantly different from corresponding WT mice according to Student’s t test (p < 0.05).
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Figure 2. Severe Intestinal Inflammation in Angptl4–/– Mice Chroni-

cally Fed HFD

Representative H&E staining of small intestine (A) or mesenteric fat (B) of WT

and Angptl4�/� mice fed HFD for 19 weeks (study 1). (Inset) High-magnifica-

tion image of lymphocyte infiltrate (top) or presence of granulocytes (bottom).

(C) Sirius red staining of small intestine of WT and Angptl4�/�mice fed HFD for

19 weeks. Arrow indicates inflammatory infiltrate.
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ascites or other macroscopic abnormalities were observed.

Strikingly, after 8 weeks of HFD, plasma levels of serum amyloid

A (SAA) and other inflammatory markers were dramatically

increased in Angptl4�/� mice (Figures 3A and 3B). Whereas

IL-6 was undetectable in plasma of WT mice, levels averaged

63 ± 26 pg/mL in Angptl4�/� mice (normal values <15 pg/mL).

These changes were paralleled by massive induction of hepatic

mRNA for SAA2 and other acute phase proteins haptoglobin and

lipocalin 2 (Figure 3C). Furthermore, increased expression of

macrophage/Kupffer cell marker Cd68 (Figure 3D) and

enhanced Cd68 immunostaining was observed (Figure 3E).

Consistent with these data, serum levels of negative acute phase

protein albumin were decreased (Figure 3F). Thus, Angptl4�/�

mice fed HFD exhibit systemic inflammation and a massive

acute phase response several weeks prior to development of

ascites and other clinical symptoms.

Chronic HFD is known to induce adipose tissue inflammation,

characterized by adipose infiltration of macrophages. However,

no signs of enhanced macrophage or other leukocyte infiltration

were observed in epididymal fat ofAngptl4�/�mice after 8weeks

of HFD (Figures S3A and S3B), suggesting that enhanced

systemic inflammation does not originate in the adipose tissue.

Inflammation in Angptl4–/– Mice Fed HFD Originates
in Mesenteric Lymph Nodes
Interestingly, a trend toward increased plasma SAA levels in

Angptl4�/� mice was already visible after 1 week of HFD (Fig-
Cell M
ure 4A). HFD has been proposed to lead to inflammatory stress

via changes in intestinal microflora and/or increased release of

LPS (Cani et al., 2007). However, portal LPS levels were lowest

inAngptl4�/�mice fedHFD (Figure 4B). Importantly, the increase

in plasma SAA levels in Angptl4�/� mice by HFD was unaffected

by chronic oral antibiotic treatment (Figure 4C), which effectively

reduced intestinal bacterial counts (Figure 4D, Figure S4A) and

resulted in a severely enlarged caecum (data not shown). These

data suggest that induction of systemic inflammation in

Angptl4�/� mice by HFD is independent of the intestinal

microbiota.

Remarkably, we noticed that the mesenteric lymph nodes

(MLNs) were dramatically enlarged in Angptl4�/� mice already

after 5 weeks of HFD, indicating massive mesenteric lymphade-

nitis (Figures 4E and 4F). Inflammation extended to mesenteric

fat which exhibited mesenteric panniculitis (Figure S4B). High-

fat feeding is known to promote intestinal lymph flow and forma-

tion of chylomicrons, which pass through the MLN as chyle

before reaching the circulation. Hence, MLN are exposed to

extremely high TG concentrations, which reach 55 mM in rats

fed HFD (mean 35 ± 11 mM). To investigate the role of increased

chyle flow, mice were fed for 5 weeks a diet rich in medium chain

TGs (MCT) (Table S2), which are not processed via the lymph but

enter the portal vein as free fatty acids. Remarkably, induction of

plasma SAA and mesenteric lymphadenitis were absent in

Angptl4�/� mice fed MCT (Figures 4G and 4H), suggesting the

response is mediated by chylomicrons. A safflower oil-based

HFD, which as mentioned previously did not provoke a clinical

phenotype, also did not promote inflammation in Angptl4�/�

mice, whereas a lard-based high saturated fat diet gave similar

results as the palm-oil based HFD (Figures 4G and 4H). Use of

a palm oil-based diet with intermediate fat content supported

a clear correlation between dietary saturated fat content and

plasma SAA in Angptl4�/� mice (Figure 4I). Consistent with

a direct proinflammatory effect of saturated fat via chylomicrons,

there was a clear trend toward increased expression of several

inflammatory mediators in MLN of Angptl4�/� mice already after

1 day of HFD (Figure 4J, Figure S4C). These data indicate that in

Angptl4�/� mice, a diet rich in saturated fat rapidly causes

severe mesenteric lymphadenitis and panniculitis via chylomi-

crons, leading to a massive hepatic acute phase response via

the connecting portal circulation.

Absence of Angptl4 Stimulates Foam Cell Formation
and Inflammation in MLN Macrophages
MLNs are packed with numerous immune cells including macro-

phages. Microscopic examination of MLN from Angptl4�/� mice

but not WT mice fed HFD for 5 weeks showed an abundance of

multinucleated Touton giant cells (Figures 5A and 5B), origi-

nating from fusion of aberrant lipid-laden tissue macrophages

as verified by F4/80 immunostaining (Figure 5C). Formation of

Touton cells is known to occur as reaction to lipid material in

lymph nodes and is characteristic of lipid lymphadenopathy

(Aterman et al., 1988). Accumulation of neutral lipids in Touton

cells was confirmed by oil red O (Figure 5D) and Sudan black

staining (Figure 5E). Importantly, Touton cells were spotted in

Angptl4�/� mice already after 1 day of HFD (Figure S4D). The

data suggest a major role of MLN macrophages in initiating

inflammation in Angptl4�/� mice fed HFD.
etabolism 12, 580–592, December 1, 2010 ª2010 Elsevier Inc. 583



Figure 3. High-Fat Feeding Provokes

Massive Acute Phase Response in

Angptl4–/– Mice

(A) Plasma serum amyloid (SAA) levels in WT and

Angptl4�/� mice fed LFD or HFD (study 1).

(B) Plasma levels of numerous cytokines inWT and

Angptl4�/� fed HFD for 8 weeks. Values are ex-

pressed relative to WT.

(C) Hepatic mRNA levels of SAA2, haptoglobin,

and lipocalin 2 determined by qPCR. Expression

was normalized against 36B4.

(D) Hepatic mRNA levels of macrophage marker

Cd68.

(E) Cd68 immunostaining of liver sections of WT

and Angptl4�/� mice fed HFD for 8 weeks.

(F) Plasma serum albumin levels. n = 4–11 mice

per group. Error bars represent SEM. Asterisk indi-

cates significantly different from corresponding

WT mice according to Student’s t test (p < 0.05).
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Previously, TG-rich VLDL particles were shown to stimulate

foam cell formation and provoke release of cytokines by mouse

peritoneal macrophages by serving as source of proinflamma-

tory saturated fatty acids (Gianturco et al., 1982; Saraswathi

and Hasty, 2006). This effect required LPL, which is highly ex-

pressed in macrophages (Babaev et al., 1999; Ostlund-Lindqvist

et al., 1983; Skarlatos et al., 1993) and lymph nodes (http://

biogps.gnf.org/) (Lattin et al., 2008). Microarray analysis indi-

cated that LPL was among the top 25 of genes with the highest

microarray expression signal in peritoneal mouse macrophages

(Table S3). Since Angptl4 is also expressed in macrophages, is

dramatically induced by chyle (Figure S5A), and can inhibit

macrophage LPL (Figure S5B), we hypothesized that Angptl4

minimizes lipolysis of chylomicrons by MLN macrophages and

accordingly suppresses uptake of proinflammatory saturated

fatty acids. To test this hypothesis, peritoneal macrophages

from Angptl4�/� mice were incubated with chyle obtained from

themesenteric lymph duct of rats fed palm oil-based HFD. Chyle

dramatically increased lipid storage in macrophages leading to

foam cell formation, which was strongly reduced by the LPL

inhibitor orlistat (Figure S5C). Increased lipid uptake was verified

by elevated expression of PPAR-LXR target Abca1 and

decreased expression of SREBP targets, as shown by whole

genome expression profiling (Figure 6A) and qPCR (Figure S5D).

Importantly, increased lipid uptake was associated with
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pronounced induction of numerous

inflammation and immune-related genes,

as shown by significant overrepresenta-

tion of GO classes corresponding to

those pathways and by Ingenuity Canon-

ical Pathway analysis (Figures S6A and

S6B). Induction of inflammation, exempli-

fied byCxcl2,Gdf15, oncostatin M, Ptgs2

(COX-2), and other genes, was almost

entirely blunted by orlistat, indicating

lipolysis and LPLdependency (Figure 6A).

Some overlap in macrophage gene regu-

lation was observed between chyle and

LPS, but overall effects were mostly

divergent (Figure S6C). Specifically,
typical targets of LPS such as IL-1b were not induced by chyle,

while numerous inflammatory genes upregulated by chyle were

not induced by LPS, including Gdf15 and Vegfa.

To examine whether Angptl4 canmimic the effect of orlistat on

macrophage inflammation,macrophageswere loadedwith chyle

in thepresenceof recombinantAngptl4. Angptl4 did not influence

cell viability, which was equally high in Angptl4- and PBS-treated

cells (>85%). At a concentration that causesmaximal inhibition of

LPL (Lichtenstein et al., 2007), Angptl4 prevented lipid uptake

from chyle (Figure 6B) and markedly reduced inflammation

(Figures 6A and 6C), as shown by strongly blunted induction of

inflammatory markers Ptgs2, Cxcl2, Ccr1, and Gdf15. Inhibitory

effects of Angptl4 andorlistat on chyle-elicited changes in inflam-

matory gene expression were highly similar and support

a commonmechanism of action (Figure 6A). No clear differences

in foam cell formation upon chyle loading were observed

between WT and Angptl4�/� macrophages (Figure S5C), likely

because induction of Angptl4 protein by chyle in WT macro-

phages and subsequent feedback inhibition of lipid uptake via

LPL lag behind the extremely rapid rate of lipid uptake.

Angptl4 Abolishes Chyle-Induced ER Stress
in Macrophages
To explore the mechanismmediating the proinflammatory effect

of chyle, peritoneal macrophages were incubated with different

http://biogps.gnf.org/
http://biogps.gnf.org/
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chemical modulators including an inhibitor of LPS-induced TLR4

signaling (Polymyxin B), sphingolipid biosynthesis (Myriocin),

and fatty acid translocase/Cd36 (Sulfosuccinimidyl oleate) (Fig-

ure 6D). None of the compounds showed any repressive effect

on chyle-induced inflammation, although the LPS inhibitor poly-

myxin B augmented expression of Gdf15 and Cxcl2.

Since ER stress was one of the canonical pathways signifi-

cantly altered by chyle (Table S6B) and is linked to activation of

inflammation (Hotamisligil, 2010), we further focused our investi-

gation on the ER stress pathway. The mammalian ER stress

pathway consists of three major branches: IRE1a, PERK, and

ATF6.UponER stress activation, IRE1a andPERKundergo auto-

phosphorylation and initiate downstream targets. IRE1a medi-

ates the splicing of XBP1 mRNA, while PERK phosphorylates

eIF2a, leading to attenuation of global translation and induction

of expression of Atf4 and Ddit3 (CHOP). Remarkably, similar to

the effect of ER stress inducers thapsigargin and tunicamycin,

chyle significantly increased total IRE1a protein and IRE1a phos-

phorylation (Figure 7A) anddramatically stimulatedXBP1splicing

(Figure 7B).Moreover, chyle stimulated phosphorylation of PERK

and its target eIF2a, markedly increased CHOP protein, and up-

regulated expression of many ER stress target genes including

XBP1s, CHOP, and Atf4 (Figure 7C). Importantly and consistent

with its antilipolytic role, effects of chyle on ER stress marker

genes were entirely abolished by Angptl4 (Figure 7D). Taken

together, chyle induces ER stress in macrophages, which may

account for the pronounced activation of inflammation.

Saturated and Unsaturated Fatty Acids Differentially
Modulate Angptl4 mRNA and ER Stress
Asmentionedabove, chyle dramatically increasedAngptl4mRNA

in WT peritoneal macrophages (Figure 7E). Similarly, individual

fattyacidsmarkedly increasedAngptl4mRNA inmouseperitoneal

and humanU937macrophages (Figure 7F). Compared to unsatu-

rated oleic and linoleic acid, the saturated palmitic acid was

significantly less potent in inducing Angptl4. In contrast, expres-

sion of IRE1a, XBP1s, CHOP, Atf4, and Gdf15 and to a lesser

extent Cxcl2 was specifically stimulated by palmitic acid (Fig-

ure 7G). Palmitic, oleic, and linoleic acid represent 95% of fatty

acids present in the various diets used, excluding the MCT diet.

Finally, to study which specific PPAR isotype is involved in

Angptl4 regulation by fatty acids, three types of macrophages

were treated with synthetic agonists for PPARa, PPARd, and

PPARg. No induction of Angptl4 expression was observed with

PPARa agonist Wy14643 (Figure S7A). The PPARd agonist

GW501516 consistently induced Angptl4 mRNA in all three cell

types,whereas thePPARgagonist rosiglitazone increasedAngptl4

mRNA in peritoneal macrophages and to a minor extent in U937

cells. These data suggest that PPARd most likely mediates the

effect of chylomicron-derived fatty acids on Angptl4 expression.

Taken together, these results demonstrate that Angptl4

protects MLN macrophages from uncontrolled lipid accumula-

tion after high-fat feeding, thereby preventing lipid-induced ER

stress and consequent inflammation.

DISCUSSION

After a saturated fat-rich meal, MLNs are exposed to extremely

high concentrations of chylomicrons via the chyle, which might
Cell M
lead to generation of large amounts of proinflammatory satu-

rated fatty acids upon TG lipolysis. Our data indicate that

MLNs and specifically resident macrophages are protected

from the proinflammatory effect of saturated fatty acids via

expression of Angptl4, which is strongly induced by chyle and

fatty acids and which via inhibition of LPL prevents lipolysis of

chylomicron-TG. In the absence of this protective autocrine

mechanism, feeding a diet rich in saturated fat rapidly leads to

enhanced lipid uptake into MLN-resident macrophages, trig-

gering foam (Touton) cell formation and a massive inflammatory

response characterized by severe mesenteric lymphadenitis.

Concomitant induction of numerous cytokines leads to amassive

hepatic acute phase response via the connecting portal circula-

tion, further evolving into a progressive, uncontrolled inflamma-

tion that culminates in chylous ascites and fibrinopurulent

peritonitis. The data thus show that Angptl4 is a key player in

the protection against the severe proinflammatory effects of

dietary saturated fat. Based on our data in mice, it can be

hypothesized that human subjects homozygous for the E40K

mutation in Angptl4, which has reduced ability to inhibit LPL

and is associated with lower plasma TG (Romeo et al., 2007;

Shan et al., 2008; Yin et al., 2009), may be particularly sensitive

to the proinflammatory effects of dietary saturated fat.

According to microarray analysis, LPL was among the most

highly expressed genes in mouse peritoneal macrophages.

The ability of macrophage LPL to facilitate lipid uptake into

macrophages is well recognized (Babaev et al., 1999; Ostlund-

Lindqvist et al., 1983). The locally released fatty acids may serve

as energy source for active macrophages (Yin et al., 1997), but

may also constitute a potential proinflammatory stimulus.

Consistent with this notion, fatty acids offered to macrophages

as VLDL-TG are taken up and engage MAPK-mediated inflam-

matory pathways along with increased expression of several

proinflammatory cytokines (Saraswathi and Hasty, 2006). Our

data indicate that exposure of macrophages to elevated yet

physiologically relevant concentrations of chylomicrons

containing saturated fatty acids unleashes a vast inflammatory

response characterized by marked induction of numerous

chemokines and other inflammation-related genes, which is

entirely dependent on TG-lipolysis. We propose that expression

of Angptl4 in macrophages and its potent induction by chylomi-

cron-derived fatty acids are part of a feedback mechanism

aimed at protecting MLN-resident macrophages against post-

prandial lipid overload and associated inflammation.

Ablation of Angptl4 is associated with decreased plasma TG

levels caused by increased peripheral LPL activity (Koster

et al., 2005). Recent data indicate that endothelium-bound LPL

is stabilized by the protein GPIHBP1, which partially prevents

LPL inhibition by Angptl4 (Sonnenburg et al., 2009). Perhaps

the almost complete blockage of lipid uptake by Angptl4 in

macrophages as opposed to its more modest effect in muscle

and adipose tissue may be explained by the minimal expression

of GPIHBP1 in macrophages (Figure S7B) (Sonnenburg et al.,

2009). Future studies will have to address this issue in more

detail.

Feeding Angptl4�/� mice a diet rich in polyunsaturated fatty

acids did not elicit an inflammatory response, consistent with

data in peritoneal macrophages showing lack of induction of

Gdf15 and Cxcl2 by oleic and linoleic acid. In contrast, oleic
etabolism 12, 580–592, December 1, 2010 ª2010 Elsevier Inc. 585



Figure 4. Chyle Containing Saturated Fat Elicits Massive Mesenteric Lymphadenitis in Angptl4–/– Mice

(A) Kinetics of change in plasma SAA in WT and Angptl4�/� mice fed HFD. n = 6–7 per group.

(B) Postprandial endotoxin levels in portal plasma from WT and Angptl4�/� mice fed LFD or HFD for 5 weeks (study 2). n = 6–7 per group.

(C) Plasma SAA levels in WT and Angptl4�/� mice fed HFD for 5 weeks being given oral antibiotics or vehicle (study 3). n = 6–10 per group.

(D) Relative abundance of total bacteria expressed per weight of colonic content in Angptl4�/� mice fed HFD and given oral antibiotics or vehicle. Asterisk indi-

cates significantly different from corresponding WT mice according to Student’s t test (p < 0.05).

(E) Photograph of mesenteric fat of Angptl4�/� mouse fed HFD for 5 weeks (study 2). Position of dramatically enlarged lymph node is indicated.

(F) MLN of WT and Angptl4�/� mice fed HFD for 5 weeks after dissection and removal of adipose tissue.

(G) Plasma SAA levels in WT and Angptl4�/�mice fed LFD or different types of HFD for 5 weeks (study 2). HF-MCT, high-fat medium-chain triglycerides; HF-lard,

high-fat lard-based; HF-palm, high-fat palm oil-based; HF-safflower, high-fat safflower oil-based.
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Figure 5. Touton Giant Cells Are Abundant

in MLN of Angptl4–/– Mice Fed HFD

(A) Low-magnification image of H&E staining of

MLN from WT and Angptl4�/� mice fed HFD for

5 weeks (study 2). Touton giant cells are indicated

by yellow arrows. (B) High-magnification image of

MLN with Touton giant cells from Angptl4�/� mice

fed HFD for 5 weeks (C) F4/80 immunostaining of

MLN with Touton giant cell. (D) Oil red O staining

counterstained with hematoxylin. (E) Sudan black

staining.
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and linoleic acid were much more potent inducers of Angptl4

expression compared to palmitic acid, suggesting that the

Angptl4-mediated feedback inhibition of lipid uptake and inflam-

mation is disturbed in presence of saturated fatty acids.

An important question is how chyle induces inflammation in

macrophages. Use of chemical inhibitors indicated that the

response is not mediated by LPS, is not dependent on Cd36-

mediated fatty acid transport, and does not require sphingolipid

synthesis. Strikingly, chyle caused pronounced activation of

different branches of the ER stress pathway. It has been shown

that ER stress can promote inflammation by various mecha-

nisms, including via IRE1a-mediated activation of stress kinases

such as the c-Jun N-terminal kinase (Urano et al., 2000), and via

PERK-mediated activation of NF-kB (Jiang et al., 2003). We

found that chyle stimulated IRE1a phosphorylation to promote

XBP1 splicing, and activated PERK, eIF2a, and their down-

stream targets. Activation of ER stress in peritoneal macro-

phages could be reproduced by free palmitic acid but not oleic

or linoleic acid, suggesting the response is mediated by satu-

rated fatty acids.

The mechanism by which saturated fatty acids induce ER

stress has been the subject of recent investigations. Palmitate

but not palmitoleate induced ER stress in pancreatic b cells

(Diakogiannaki et al., 2008). In liver cells saturated fatty acids

induced ER stress independently of ceramide synthesis (Wei

et al., 2006). Stimulation of ER stress by palmitate may occur

via increasing the saturated lipid content of ER membrane phos-

pholipids and TG, leading to compromised ER morphology and

integrity and impaired function of protein-folding chaperones

(Borradaile et al., 2006). Data also point to an important role for

aP2 (Fabp4) in linking saturated fatty acids to ER stress inmacro-

phages via alterations in lipid composition (Erbay et al., 2009).

Several studies have attributed the proinflammatory effect of

saturated fatty acids to activation of TLR4 (Lee et al., 2001; Shi
(H) Size of MLN in WT and Angptl4�/� mice fed LFD or different types of HFD for 5 weeks. n = 6–7 mice per

HF-lard were significantly different from the other groups as determined by one-way ANOVA followed by Tu

(I) Close correlation between saturated fat content of the diet and the mean plasma level of SAA in Angptl4�

(J) Expression of inflammatory marker genes in MLN of WT and Angptl4�/� mice fed HFD for 24 hr (study 4

Cell Metabolism 12, 580–592,
et al., 2006; Suganami et al., 2007).

Recently, interplay between TLR4 (and

TLR2) and the ER stress pathway was

demonstrated (Woo et al., 2009). IRE1a

was shown to be a positive regulator of

the inflammatory response to TLR activa-

tion in macrophages, while the PERK
pathway was not induced by TLR signaling (Martinon et al.,

2010). These data hint at a possible role for TLR signaling in

the response to chyle in macrophages. However, unlike TLR

signaling, chyle dramatically induced ER stress, as evidenced

by the activation of ER stress sensors IRE1a and PERK as well

as their downstream targets. Additionally, whole-genome anal-

ysis of gene regulation by chyle versus LPS revealed some over-

lap, but chyle clearly did not mimic LPS, as illustrated by the

differential response of classic LPS/TLR4-target IL-1b. Although

these data do not rule out a role for TLR signaling inmediating the

inflammatory effects of chyle, induction of ER stress seems

a much more plausible mechanism.

A previous report briefly alluded to development of chylous

ascites in Angptl4�/� mice after 20 weeks of HFD (Desai et al.,

2007). In that study it was found that repeated injections of WT

mice fed HFD with a monoclonal antibody against Angptl4 reca-

pitulated the phenotype ofAngptl4�/�mice. Since the antibody is

directed against the N-terminal portion of Angptl4 and abolishes

its ability to inhibit LPL, the data support the notion that the clin-

ical abnormalities in Angptl4�/� mice fed HFD are related to

altered LPL activity, and are independent of C-terminal Angptl4.

Chylous ascites has been observed in mice heterozygous for

the transcription factor Prox1 as well as in mice lacking Angio-

poietin-2. Both proteins are essential for development of the

lymphatic vasculature (Gale et al., 2002; Harvey et al., 2005).

Accordingly, it is tempting to hypothesize a similar role for

Angptl4. However, Prox1+/� and Angiopoietin2�/� mice develop

chylous ascites shortly after birth, reflecting a severe develop-

mental defect. In contrast, Angptl4�/� mice do not exhibit

ascites unless challengedwith HFD for at least 12weeks. Rather,

the data indicate that ascites was secondary to progressive

inflammation originating in MLN macrophages, leading to

massive lymphadenitis and consequent obstruction in mesen-

teric lymph flow, which in turn caused dilation of intestinal
group. Means of Angptl4�/� mice fed HF-palm or

key’s post-hoc test.
/� mice after 3 weeks of feeding.

). n = 3 per group. Error bars represent SEM.
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Figure 6. Angptl4 Inhibits Macrophage Foam Cell Formation and Inflammatory Gene Expression

(A) Heatmap showing changes in expression of selected genes inAngptl4�/�mouse peritoneal macrophages incubated for 6 hr with chyle (final TG concentration

2 mM) and/or orlistat (20 mM), or with chyle and/or recombinant Angptl4 (2.5 mg/mL). Expression in untreated macrophages was set at 1. In parallel, expression

changes are shown of same genes in peritoneal macrophages treated for 4 hr with LPS (100 ng/mL). All genes induced by chyle by at least 2.5-fold and which are

labeled with ‘‘cytokine or chemokine activity’’ or ‘‘immune or inflammatory response’’ by Gene Ontology (Biological Process) or are involved in immunity/inflam-

mation based on literature study were included. Also, SREBP target genes that were >75% suppressed by chyle were included.

(B) Oil redO staining ofAngptl4�/�mouse peritoneal macrophages incubated for 6 hr with chyle (TG concentration 2mM) and increasing concentrations ofmouse

recombinant Angptl4. Chyle was collected from rats fed palm oil-based HFD. (Inset) High-magnification image of macrophage foam cell.

(C) Q-PCR expression of inflammatory genes in Angptl4�/� macrophages treated with chyle and/or Angptl4 (2.5 mg/mL). Asterisk indicates significantly different

according to Student’s t test (p < 0.05).

(D) Q-PCR expression of inflammatory genes inAngptl4�/�macrophages treated with chyle and various pharmacologic inhibitors. SSO, sulfosuccinimidyl oleate.

Differences were evaluated for statistical significance by one-way ANOVA followed by Tukey’s post-hoc test. Asterisk indicates significantly different from

control-treated cells (p < 0.05). Error bars represent SEM.
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lymphatic vessels. Furthermore, inflammation of MLN and

mesenteric fat led to increased local lymphatic and vascular

permeability, as shown by chylous ascites and low SAAG,

respectively, which is indicative of exudative ascites. The more

than 2-fold higher protein concentration in ascites fluid

compared to chyle supports an important contribution of

vascular leakage next to leakage from chyle. Increased circula-

tory leakage caused fibrinogen extravasation, which after clot-

ting accumulated as fibrin and covered abdominal organs.

Chronic inflammation likely gave rise to impaired intestinal

barriers function and translocation of enteric bacteria, causing

peritonitis and death of the animals.

In conclusion, Angptl4 protects against the severe proinflam-

matory effects of dietary saturated fat in MLN by inhibiting

macrophage LPL, thereby reducing lipolytic release of fatty

acids, macrophage foam cell formation, ER stress, and initiation

of a marked inflammatory response. The data illustrate how the

unique anatomy of the intestinal lymphatic system in which

immune cells residing in MLN are exposed to excessive post-

prandial TG concentrations requires activation of an effective

cellular mechanism that protects against elevated lipid uptake

and its complications. It can be speculated that the inability to

effectively recruit this mechanism may contribute to proinflam-

matory changes related to elevated saturated fat consumption.

EXPERIMENTAL PROCEDURES

Animals

Animal studies were done using pure-bredWT and Angptl4�/�mice on C57Bl/

6 background (Koster et al., 2005). In study 1, male 11-week-oldmice were fed

LFD or HFD for 8 or 19 weeks, providing 10% or 45% energy percent as TG

(D12450B or D12451, Research Diets, Inc., Table S1) (Research Diets

Services, Wijk bij Duurstede, Netherlands), after 3 week run in (adaptation

period) with LFD. In study 2, male 10- to 18-week-old mice were fed LFD or

HFD for 5 weeks, after 2 week run in with LFD. Fat source of the HFDwas either

palm oil (standard HFD used in studies 1, 3, and 4, Table S1), lard, MCT oil, or

safflower oil (Table S2). Blood was collected from tail vein at weekly intervals.

In study 3, male 12-week-old mice were fed standard HFD for 5 weeks, after

2 week run in with standardized LFD AIN93G (see http://testdiet.

purina-mills.com/PDF/57W5.pdf and Table S2). The following antibiotics

were provided in drinkingwater: ampicillin (1 g/L), neomycin (1 g/L), andmetro-

nidazole (0.5 g/L). Blood was collected from tail vein at weekly intervals. In

study 4, mice were fed low-fat AIN93G or standard HFD for 24 hr, after

1 week run in with AIN93G. In the latter studies, low-fat AIN93G was chosen

instead of D12450B to achieve minimal dietary saturated fat intake. Diet

composition is provided in Tables S1 and S2. At the end of each study, mice

were anaesthetized with mixture of isoflurane (1.5%), nitrous oxide (70%),

and oxygen (30%). Blood was collected by orbital puncture into EDTA tubes.

Mice were killed by cervical dislocation, after which tissues were excised and

directly frozen in liquid nitrogen or prepared for histology.

Wistar rats were fed palm oil-based HFD (D12451) overnight. The next

morning, animals were anesthetized using isoflurane, and mesenteric lymph

ducts were cannulated. Chyle was collected for 1–2 hr and stored at �20�C.
Chyle TG concentrations averaged at 35 ± 11mMas determined by enzymatic

assay (Instruchemie, Delfzijl, Netherlands). Animal studies were approved by

the local animal ethics committee at Wageningen University.

Two terminally ill animals were transferred to the Small Animal Pathology

laboratory of the Faculty of Veterinary Medicine at Utrecht University for formal

autopsy by a licensed animal pathologist.

Cell Culture

U937 human monocytes were differentiated into macrophages by 24 hr treat-

ment with phorbol myristate acetate (10 ng/mL). U937 macrophages were

subsequently incubated for 6 hr with fatty acids (C16:0, C18:1, C18:2) coupled
Cell M
to fatty acid free BSA to a final concentration of 500 mM as previously

described (de Vogel-van den Bosch et al., 2008).

To obtain peritoneal macrophages, WT and Angptl4�/� mice were injected

intraperitoneally with 1 ml 4% thioglycollate. Three days later, animals were

anesthesized with isoflurane, bled via orbital puncture, and peritoneal cavities

washed using 10 ml ice-cold RPMI medium supplemented with 100 U/mL

penicillin and 100 mg/mL streptomycin (Lonza, Verviers, Belgium). Cell pellets

were incubated with RBC lysis buffer on ice for 5 min and subsequently

washed with RPMI medium supplemented with 10% fetal bovine serum

(FBS) (Lonza) and antibiotics, repelletized, and seeded at density of 3 3 105

cells/cm2. Two hours later, cells were washed twice with PBS to remove non-

adherent cells and provided with medium. Two days later, cells were exposed

to chyle at TG concentration of 2 mM for 6 hr preceded by preincubation

with 20 mM orlistat (Sigma Zwijndrecht, Netherlands) or 2.5 mg/mL mouse

recombinant Angptl4 (R&D Systems, Abingdon, UK) for 1.5 hr. To explore

the mechanism induced by chyle, Angptl4�/� macrophages were preincu-

batedwith 10 mMmyriocin, 10 mg/ml Polymyxin B, or 0.5mMSulfosuccinimidyl

oleate (SSO) for 30 min followed by exposure of cells to either PBS or chyle at

TG concentration of 2 mM for 6 hr. In ER stress experiments, Angptl4�/�

macrophages were exposed to 100 nM thapsigargin, 2.5 mg/ml tunicamycin,

or chyle (TG 2 mM) for 6 hr. Analysis of ER stress in peritoneal macrophages

was carried out as described (Yang et al., 2010).

Histology/Immunohistochemistry

Hematoxylin and eosin (H&E) staining of sections was performed using stan-

dard protocols. For detection of macrophages, immunohistochemistry was

performed using antibody against Cd68 (liver, adipose tissue) or F4/80 (lymph

nodes) (Serotec, Oxford, UK). Paraffin-embedded sections were preincubated

with 20% normal goat serum followed by overnight incubation at 4�C with

primary antibody diluted 1:50 in PBS/1% BSA. After incubation with primary

antibody, goat anti-rat IgG conjugated to horseradish peroxidase (Serotec)

was used as secondary antibody. Visualization was performed using AEC

Substrate Chromogen (Cd68) or 3,30-diaminobenzidine (F4/80). Negative

controls were prepared by omitting primary antibody.

For Sirius red staining, paraffin-embedded sections of small intestine were

mounted on Superfrost microscope slides. Sections were dewaxed in xylene

and rehydrated in series of graded alcohols. Slides were stained in picrosirius

red 0.1% picric acid for 90 min and rinsed in acidified H2O 0.5% acetic acid.

Oil red O stock solution was prepared by dissolving 0.5 g oil red O (Sigma,

#O0625) in 500 ml isopropanol. Oil red O working solution was prepared by

mixing 30 ml oil red O stock with 20 ml dH2O, followed by filtration. Sections

(5 mm) were cut from frozen MLNs embedded in OCT. Sections were air dried

for 30 min, rehydrated in dH2O, and fixated for 10 min in formal calcium (4%

formaldehyde, 1% CaCl2). Sections were immersed in oil red O working solu-

tion for 10 min, followed by two rinses with dH2O. Hematoxylin nuclei staining

was subsequently carried out for 5 min followed by several rinses with dH2O.

Sections were mounted in aqueous mountant (Imsol, Preston, UK).

For Sudan black staining, 0.5 g Sudan black (Sigma, #86015) was dissolved

in 100 ml warm 70% ethanol and subsequently filtered. Sections were fixed

and rehydrated as above. After two 3 min rinses with 50% ethanol and two

quick rinses with dH2O, sections were immersed in Sudan black solution for

10 min, followed by two rinses with dH2O. Sections were mounted in aqueous

mountant (Imsol, Preston, UK).

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, three tables, Supplemental

Experimental Procedures, and Supplemental References and can be found

with this article online at doi:10.1016/j.cmet.2010.11.002.
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Figure 7. Angptl4 Prevents Chyle-Induced ER Stress

(A) Immunoblots of IRE1a, PERK, eIF2a, and CHOP using regular gels or Phos-tag gels (IRE1a only) of Angptl4�/� macrophages treated with chyle (TG concen-

tration 2 mM), thapsigargin (100 nM), or tunicamycin (2.5 mg/mL) for 6 hr. ‘‘P’’ represents phosphorylated form.

(B) Regular RT-PCR of XBP1 processing revealing spliced and unspliced XBP1 mRNA.

(C) Q-PCR expression of ER stress genes. Differences were evaluated for statistical significance by one-way ANOVA followed by Tukey’s post-hoc test. Asterisk

indicates significantly different from control-treated cells (p < 0.05).

(D) Q-PCR expression of selected genes involved in ER stress in Angptl4�/� mouse peritoneal macrophages incubated for 6 hr with chyle and/or recombinant

Angptl4 (2.5 mg/mL). Asterisk indicates significantly different according to Student’s t test (p < 0.05).
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