4,369 research outputs found
Estimation of unsaturated hydraulic conductivity of granular soils from particle size parameters
Estimation of unsaturated hydraulic conductivity could benefit many engineering or research problems such as water flow in the vadose zone, unsaturated seepage and capillary barriers for underground waste isolation. The unsaturated hydraulic conductivity of a soil is related to its saturated hydraulic conductivity value as well as its water retention behaviour. By following the first author's previous work, the saturated hydraulic conductivity and water retention curve (WRC) of sandy soils can be estimated from their basic gradation parameters. In this paper, we further suggest the applicable range of the estimation method is for soils with d10 > 0.02mm and Cu < 20, in which d10 is the grain diameter corresponding to 10% passing and Cu is the coefficient of uniformity (Cu= d60/d10). The estimation method is also modified to consider the porosity variation effect. Then the proposed method is applied to predict unsaturated hydraulic conductivity properties of different sandy soils and also compared with laboratory and field test results. The comparison shows that the newly developed estimation method, which predicts the relative permeability of unsaturated sands from basic grain size parameters and porosity, generally has a fair agreement with measured data. It also indicates that the air-entry value is mainly relative to the mean grain size and porosity value change from the intrinsic value. The rate of permeability decline with suction is mainly associated with grain size polydispersity
HATS-13b and HATS-14b: two transiting hot Jupiters from the HATSouth survey
We report the discovery of HATS-13b and HATS-14b, two hot-Jupiter transiting
planets discovered by the HATSouth survey. The host stars are quite similar to
each other (HATS-13: V = 13.9 mag, M* = 0.96 Msun, R* = 0.89 Rsun, Teff = 5500
K, [Fe/H] = 0.05; HATS-14: V = 13.8 mag, M* = 0.97 Msun, R* = 0.93 Rsun, Teff =
5350 K, [Fe/H] = 0.33) and both the planets orbit around them with a period of
roughly 3 days and a separation of roughly 0.04 au. However, even though they
are irradiated in a similar way, the physical characteristics of the two
planets are very different. HATS-13b, with a mass of Mp = 0.543 MJ and a radius
of Rp = 1.212 RJ, appears as an inflated planet, while HATS-14b, having a mass
of Mp = 1.071 MJ and a radius of Rp = 1.039 RJ, is only slightly larger in
radius than Jupiter.Comment: 13 pages, 7 figures, Submitted to Astronomy & Astrophysics. arXiv
admin note: text overlap with arXiv:1503.0006
Distinguishing and electron pairing symmetries by neutron spin resonance in superconducting NaFeCoAs
A determination of the superconducting (SC) electron pairing symmetry forms
the basis for establishing a microscopic mechansim for superconductivity. For
iron pnictide superconductors, the -pairing symmetry theory predicts the
presence of a sharp neutron spin resonance at an energy below the sum of hole
and electron SC gap energies () below . On the other hand,
the -pairing symmetry expects a broad spin excitation enhancement at an
energy above below . Although the resonance has been observed in
iron pnictide superconductors at an energy below consistent with the
-pairing symmetry, the mode has also be interpreted as arising from the
-pairing symmetry with due to its broad energy width and
the large uncertainty in determining the SC gaps. Here we use inelastic neutron
scattering to reveal a sharp resonance at E=7 meV in SC
NaFeCoAs ( K). On warming towards , the mode
energy hardly softens while its energy width increases rapidly. By comparing
with calculated spin-excitations spectra within the and
-pairing symmetries, we conclude that the ground-state resonance in
NaFeCoAs is only consistent with the -pairing, and
is inconsistent with the -pairing symmetry.Comment: 9 pages, 8 figures. submitted to PR
Visual/infrared interferometry of Orion Trapezium stars: Preliminary dynamical orbit and aperture synthesis imaging of the Theta 1 Orionis C system
Located in the Orion Trapezium cluster, Theta 1 Orionis C is one of the
youngest and nearest high-mass stars (O5-O7) and also known to be a close
binary system. Using new multi-epoch visual and near-infrared bispectrum
speckle interferometric observations obtained at the BTA 6 m telescope, and
IOTA near-infrared long-baseline interferometry, we trace the orbital motion of
the Theta 1 Ori C components over the interval 1997.8 to 2005.9, covering a
significant arc of the orbit. Besides fitting the relative position and the
flux ratio, we apply aperture synthesis techniques to our IOTA data to
reconstruct a model-independent image of the Theta 1 Ori C binary system.
The orbital solutions suggest a high eccentricity (e approx. 0.91) and
short-period (P approx. 10.9 yrs) orbit. As the current astrometric data only
allows rather weak constraints on the total dynamical mass, we present the two
best-fit orbits. From these orbital solutions one can be favoured, implying a
system mass of 48 M_sun and a distance to the Trapezium cluster of 434 pc. When
also taking the measured flux ratio and the derived location in the HR-diagram
into account, we find good agreement for all observables, assuming a spectral
type of O5.5 for Theta 1 Ori C1 (M=34.0 M_sun) and O9.5 for C2 (M=15.5 M_sun).
We find indications that the companion C2 is massive itself, which makes it
likely that its contribution to the intense UV radiation field of the Trapezium
cluster is non-negligible. Furthermore, the high eccentricity of the
preliminary orbit solution predicts a very small physical separation during
periastron passage (approx. 1.5 AU, next passage around 2007.5), suggesting
strong wind-wind interaction between the two O stars.Comment: 13 pages, 9 figures, Accepted for publication in Astronomy &
Astrophysic
The impact of point mutations in the human androgen receptor : classification of mutations on the basis of transcriptional activity
Peer reviewedPublisher PD
Universal high work function flexible anode for simplified ITO-free organic and perovskite light-emitting diodes with ultra-high efficiency
Flexible transparent electrode materials such as conducting polymers, silver nanowires, carbon nanotubes and graphenes are being investigated as possible replacements for conventional brittle inorganic electrodes. However, they have critical drawbacks of low work function (WF), resulting in a high hole injection barrier to an overlying semiconducting layer in simplified organic or organic-inorganic hybrid perovskite light-emitting diodes (OLEDs or PeLEDs). Here, we report a new anode material (AnoHIL) that has multifunction of both an anode and a hole injection layer (HIL) as a single layer. The AnoHIL has easy WF tunability up to 5.8 eV and thus makes ohmic contact without any HIL. We applied our anodes to simplified OLEDs, resulting in very high efficiency (62% ph el(-1) for single and 88% ph el(-1) for tandem). The AnoHIL showed a similar tendency in simplified PeLEDs, implying universal applicability to various optoelectronics. We also demonstrated large-area flexible lightings using our anodes. Our results provide a significant step toward the next generation of high-performance simplified indium tin oxide (ITO)-free light-emitting diodes.
On the selection and design of proteins and peptide derivatives for the production of photoluminescent, red-emitting gold quantum clusters
Novel pathways of the synthesis of photoluminescent gold quantum clusters (AuQCs) using biomolecules as reactants provide biocompatible products for biological imaging techniques. In order to rationalize the rules for the preparation of red-emitting AuQCs in aqueous phase using proteins or peptides, the role of different organic structural units was investigated. Three systems were studied: proteins, peptides, and amino acid mixtures, respectively. We have found that cysteine and tyrosine are indispensable residues. The SH/S-S ratio in a single molecule is not a critical factor in the synthesis, but on the other hand, the stoichiometry of cysteine residues and the gold precursor is crucial. These observations indicate the importance of proper chemical behavior of all species in a wide size range extending from the atomic distances (in the AuI-S semi ring) to nanometer distances covering the larger sizes of proteins assuring the hierarchical structure of the whole self-assembled system
HATS-60b–HATS-69b: 10 Transiting Planets from HATSouth
We report the discovery of 10 transiting extrasolar planets by the HATSouth survey. The planets range in mass from the super-Neptune HATS-62b, with M-p < 0.179 M-J, to the super-Jupiter HATS-66b, with M-p = 5.33 M-J, and in size from the Saturn HATS-69b, with R-p = 0.94 R-J, to the inflated Jupiter HATS-67b, with R-p = 1.69 R-J. The planets have orbital periods between 1.6092 days (HATS-67b) and 7.8180 days (HATS-61b). The hosts are dwarf stars with masses ranging from 0.89 M-circle dot (HATS-69) to 1.56 M-circle dot (HATS-64) and have apparent magnitudes between V = 12.276 +/- 0.020 mag (HATS-68) and V = 14.095 +/- 0.030 mag (HATS-66). The super-Neptune HATS-62b is the least massive planet discovered to date with a radius larger than Jupiter. Based largely on the Gaia DR2 distances and broadband photometry, we identify three systems (HATS-62, HATS-64, and HATS-65) as having possible unresolved binary star companions. We discuss in detail our methods for incorporating the Gaia DR2 observations into our modeling of the system parameters and into our blend analysis procedures
- …