549 research outputs found

    The biosocial event : responding to innovation in the life sciences

    Get PDF
    Innovation in the life sciences calls for reflection on how sociologies separate and relate life processes and social processes. To this end we introduce the concept of the ‘biosocial event’. Some life processes and social processes have more mutual relevance than others. Some of these relationships are more negotiable than others. We show that levels of relevance and negotiability are not static but can change within existing relationships. Such changes, or biosocial events, lie at the heart of much unplanned biosocial novelty and much deliberate innovation. We illustrate and explore the concept through two examples – meningitis infection and epidemic, and the use of sonic ‘teen deterrents’ in urban settings. We then consider its value in developing sociological practice oriented to critically constructive engagement with innovation in the life sciences

    The incidence of scarring on the dorsum of the hand

    Get PDF
    When undertaking image comparison of the hand between accused and perpetrator, it is not unusual for scars to be identified on the back of the hand. To investigate the occurrence of scarring in a discreet sample, a database of 238 individuals was examined, and the dorsum of the right and left hands was gridded for each individual. The position, size and type of scar were recorded within each grid. It was found that, in general, males exhibited a higher incidence of scarring than females. However, males were more likely to show scarring on their left hand whereas females were more likely to exhibit scarring on their right hand. Contrary to the literature, scarring was not most prevalent along the borders of the hand but occurred more frequently in association with the index and middle finger corridor regions. Surgical scars were rare as were large scars whereas linear scars smaller than 6 mm were the most frequently identified. Close to half of the sample did not exhibit scarring on one hand. The importance of understanding the pattern of scarring on the back of the hand is discussed in the light of forensic image comparison analysis

    High resolution spatial modelling of greenhouse gas emissions from land use change to energy crops in the UK

    Get PDF
    We implemented a spatial application of a previously evaluated model of soil GHG emissions, ECOSSE, in the United Kingdom to examine the impacts to 2050 of land-use transitions from existing land use, rotational cropland, permanent grassland or woodland, to six bioenergy crops; three ‘first-generation’ energy crops: oilseed rape, wheat and sugar beet, and three ‘second-generation’ energy crops: Miscanthus, short rotation coppice willow (SRC) and short rotation forestry poplar (SRF). Conversion of rotational crops to Miscanthus, SRC and SRF and conversion of permanent grass to SRF show beneficial changes in soil GHG balance over a significant area. Conversion of permanent grass to Miscanthus, permanent grass to SRF and forest to SRF shows detrimental changes in soil GHG balance over a significant area. Conversion of permanent grass to wheat, oilseed rape, sugar beet and SRC and all conversions from forest show large detrimental changes in soil GHG balance over most of the United Kingdom, largely due to moving from uncultivated soil to regular cultivation. Differences in net GHG emissions between climate scenarios to 2050 were not significant. Overall, SRF offers the greatest beneficial impact on soil GHG balance. These results provide one criterion for selection of bioenergy crops and do not consider GHG emission increases/decreases resulting from displaced food production, bio-physical factors (e.g. the energy density of the crop) and socio-economic factors (e.g. expenditure on harvesting equipment). Given that the soil GHG balance is dominated by change in soil organic carbon (SOC) with the difference among Miscanthus, SRC and SRF largely determined by yield, a target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation

    Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration

    Get PDF
    Peatlands have been subject to artificial drainage for centuries. This drainage has been in response to agricultural demand, forestry, horticultural and energy properties of peat and alleviation of flood risk. However, the are several environmental problems associated with drainage of peatlands. This paper describes the nature of these problems and examines the evidence for changes in hydrological and hydrochemical processes associated with these changes. Traditional black-box water balance approaches demonstrate little about wetland dynamics and therefore the science of catchment response to peat drainage is poorly understood. It is crucial that a more process-based approach be adopted within peatland ecosystems. The environmental problems associated with peat drainage have led, in part, to a recent reversal in attitudes to peatlands and we have seen a move towards wetland restoration. However, a detailed understanding of hydrological, hydrochemical and ecological process-interactions will be fundamental if we are to adequately restore degraded peatlands, preserve those that are still intact and understand the impacts of such management actions at the catchment scale

    Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: eelgrass potential as a natural biofilter

    Get PDF
    Oyster farming in estuaries and coastal lagoons frequently overlaps with the distribution of seagrass meadows, yet there are few studies on how this aquaculture practice affects seagrass physiology. We compared in situ nitrogen uptake and the productivity of Zostera marina shoots growing near off-bottom longlines and at a site not affected by oyster farming in San Quintin Bay, a coastal lagoon in Baja California, Mexico. We used benthic chambers to measure leaf NH4 (+) uptake capacities by pulse labeling with (NH4)-N-15 (+) and plant photosynthesis and respiration. The internal N-15 resorption/recycling was measured in shoots 2 weeks after incubations. The natural isotopic composition of eelgrass tissues and vegetative descriptors were also examined. Plants growing at the oyster farming site showed a higher leaf NH4 (+) uptake rate (33.1 mmol NH4 (+) m(-2) day(-1)) relative to those not exposed to oyster cultures (25.6 mmol NH4 (+) m(-2) day(-1)). We calculated that an eelgrass meadow of 15-16 ha (which represents only about 3-4 % of the subtidal eelgrass meadow cover in the western arm of the lagoon) can potentially incorporate the total amount of NH4 (+) excreted by oysters (similar to 5.2 x 10(6) mmol NH4 (+) day(-1)). This highlights the potential of eelgrass to act as a natural biofilter for the NH4 (+) produced by oyster farming. Shoots exposed to oysters were more efficient in re-utilizing the internal N-15 into the growth of new leaf tissues or to translocate it to belowground tissues. Photosynthetic rates were greater in shoots exposed to oysters, which is consistent with higher NH4 (+) uptake and less negative delta C-13 values. Vegetative production (shoot size, leaf growth) was also higher in these shoots. Aboveground/belowground biomass ratio was lower in eelgrass beds not directly influenced by oyster farms, likely related to the higher investment in belowground biomass to incorporate sedimentary nutrients

    Growing better brains? Pregnancy and neuroscience discourses in English social and welfare policies

    Get PDF
    In recent years, English welfare and health policy has started to include pregnancy within the foundation stage of child development. The foetus is also increasingly designated as ‘at risk’ from pregnant women. In this article, we draw on an analysis of a purposive sample of English social and welfare policies and closely related advocacy documents to trace the emergence of neuroscientific claims-making in relation to the family. In this article, we show that a specific deterministic understanding of the developing brain that only has a loose relationship with current scientific evidence is an important component in these changes. We examine the ways in which pregnancy is situated in these debates. In these debates, maternal stress is identified as a risk to the foetus; however, the selective concern with women living in disadvantage undermines biological claims. The policy claim of neurological ‘critical windows’ also seems to be influenced by social concerns. Hence, these emerging concerns over the foetus’ developing brain seem to be situated within the gendered history of policing women’s pregnant bodies rather than acting on new insights from scientific discoveries. By situating these developments within the broader framework of risk consciousness, we can link these changes to wider understandings of the ‘at risk’ child and intensified surveillance over family life
    • …
    corecore