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Abstract

We implemented a spatial application of a previously evaluated model of soil GHG emissions, ECOSSE, in the
United Kingdom to examine the impacts to 2050 of land-use transitions from existing land use, rotational crop-

land, permanent grassland or woodland, to six bioenergy crops; three ‘first-generation’ energy crops: oilseed

rape, wheat and sugar beet, and three ‘second-generation’ energy crops: Miscanthus, short rotation coppice wil-

low (SRC) and short rotation forestry poplar (SRF). Conversion of rotational crops to Miscanthus, SRC and SRF

and conversion of permanent grass to SRF show beneficial changes in soil GHG balance over a significant area.

Conversion of permanent grass to Miscanthus, permanent grass to SRF and forest to SRF shows detrimental

changes in soil GHG balance over a significant area. Conversion of permanent grass to wheat, oilseed rape,

sugar beet and SRC and all conversions from forest show large detrimental changes in soil GHG balance over
most of the United Kingdom, largely due to moving from uncultivated soil to regular cultivation. Differences in

net GHG emissions between climate scenarios to 2050 were not significant. Overall, SRF offers the greatest bene-

ficial impact on soil GHG balance. These results provide one criterion for selection of bioenergy crops and do

not consider GHG emission increases/decreases resulting from displaced food production, bio-physical factors

(e.g. the energy density of the crop) and socio-economic factors (e.g. expenditure on harvesting equipment).

Given that the soil GHG balance is dominated by change in soil organic carbon (SOC) with the difference among

Miscanthus, SRC and SRF largely determined by yield, a target for management of perennial energy crops is to

achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation.
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Introduction

Two of the greatest challenges facing humanity this cen-

tury are climate change, and the need to produce

enough energy to meet the demands of a growing and

developing population (Edenhofer et al., 2014). Bioen-

ergy has been proposed as a potential significant con-

tributor to both issues; as a feedstock for delivering

energy security (Sims et al., 2006), and as a contributor

to climate mitigation, through substitution of fossil

fuels, thereby reducing net greenhouse gas (GHG)

emissions from energy production (Creutzig et al.,

2015). Further, if the carbon dioxide (CO2) released on

combustion for energy generation was pumped into

long-term geological storage (bioenergy with carbon

capture and storage: BECCS), it may also serve as a neg-

ative emission technologies, capable of removing CO2

from the atmosphere (Fuss et al., 2014; Smith et al.,

2016). Although bioenergy is not without its limitations

(Creutzig et al., 2015; Smith et al., 2016), its potential role

in contributing to climate mitigation and energy secu-

rity has led to considerable attention over recent years

(Creutzig et al., 2015) with some analyses suggesting

that 20% of global energy demand could be met by bio-

mass without impact on food supply (Beringer et al.,
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2011; Slade et al., 2014). In the United Kingdom, about

3% of primary energy was from bioenergy in 2015, with

bioenergy contributing 72% of all renewable energy

(DECC, 2015). However, much of the current biomass

feedstock for bioenergy is imported and this is expected

to continue up to 2050 (Howes et al., 2011). The UK

Bioenergy Strategy (DECC, 2012) suggested that sustain-

ably sourced bioenergy (i.e. not from land with high C

stocks such as peatland or forest, or land used for food

production) could contribute ~8–11% to the UK’s total

primary energy demand by 2020 and ~8–21% by 2050. If

the United Kingdom is to source a proportion of this

bioenergy domestically, some land-use change (LUC) to

bioenergy crops is required.

It is important to assess the GHG implications of

land-use transitions to bioenergy crops because LUC

entails change in soil organic carbon (SOC) stocks

(Smith, 2008), and also potentially, emissions of other

non-CO2 GHGs (Smith et al., 2008), namely nitrous

oxide (N2O) and methane (CH4). This will better inform

decisions about what energy crops to use, what current

land uses to target (and avoid) for energy crop develop-

ment, and where to best to grow each crop (Alexander

et al., 2014; Hastings et al., 2014; Wang et al., 2014). To

these ends, the principal objective of the spatial mod-

elling exercise described here was to estimate the effects

of land-use change (LUC) to bioenergy crops, on SOC

content and GHG emissions in the United Kingdom, in

order assess the impact of potential bioenergy transi-

tions. Eighteen land-use transitions were considered:

� Rotational crops (which includes rotations consisting

entirely of arable crops and also those including

rotational grass) to Miscanthus (Miscanthus giganteus),

short rotation coppice (SRC; here represented by

willow genotype Joruun [Salix viminalis L. x S. vimi-

nalis], since this is the SRC species currently used in

commercial plantations in the UK) and short rota-

tion forestry (SRF; here represented by poplar

[mixed cultivars; Populus trichocarpa, deltoids, nigra],

since this generally shows the highest yield under

UK conditions)

� Permanent grass and forest to wheat, oilseed rape

(OSR), sugar beet, Miscanthus, SRC and SRF

� Three ‘null’ transitions for rotational crops, perma-

nent grass and forest to provide results for

unchanged land use as a baseline.

Conversion from rotational crops to OSR, sugar beet

and wheat was not considered because the rotational

crop land-use prior to transition is assumed to be simi-

lar to that following the transition, resulting in no

change in net GHG balance.

Results from the spatial simulations to determine the

effects of LUC transitions to bioenergy crops on SOC,

GHG emissions and net soil GHG balance in the United

Kingdom are presented. Net soil GHG balance from

simulations carried out using data from low, medium

and high emission climate scenarios is compared to

determine the impact of climate uncertainty.

Materials and methods

The ECOSSE model

The ECOSSE (Estimation of Carbon in Organic Soils – Seques-

tration and Emissions) model simulates soil C and nitrogen (N)

dynamics in both mineral and organic soils using meteorologi-

cal, land use, land management and soil data and simulates

changes in SOC and soil GHG emissions. The model is able to

function at the field scale or at the national scale (using only

the limited data available at this scale; Smith et al., 2010a,b,c).

ECOSSE was developed from concepts originally derived for

mineral soils in the RothC model (Jenkinson & Rayner, 1977;

Jenkinson et al., 1987; Coleman & Jenkinson, 1996) and SUN-

DIAL model (Bradbury et al., 1993; Smith et al., 1996). ECOSSE

describes soil organic matter using 5 pools: inert organic matter,

humus, biomass, resistant plant material (RPM) and decompos-

able plant material (DPM). All of the major processes of C and

N turnover are included in the model, but each process is simu-

lated using only simple equations driven by readily available

inputs. This enables ECOSSE to be used for national scale simu-

lations for which only limited input data are available.

ECOSSE simulates the soil profile to a depth of up to 3 m,

dividing the soil into 5 cm layers to facilitate the accurate simu-

lation of processes to depth. Plant C and N inputs are added

monthly to the DPM and RPM pools. During the decomposi-

tion process, material is exchanged between the soil organic

matter pools according to first-order equations, characterized

by a specific decomposition rate for each pool. The decomposi-

tion rate of each pool is modified dependent on the tempera-

ture, water content, plant cover and pH of the soil (with

additional modifiers dependent upon soil bulk density and

inorganic N concentration in the case of anaerobic decomposi-

tion; Smith et al., 2010c). The decomposition process results in

gaseous losses of CO2 and CH4, with CO2 losses dominating

under aerobic conditions and CH4 losses under anaerobic con-

ditions. ECOSSE also simulates the oxidation of atmospheric

CH4, which, under aerobic conditions, can lead to the soil being

a net consumer of CH4 (Smith et al., 2010c).

The nitrogen (N) content of the soil follows the decomposi-

tion of the soil organic matter, with a stable C:N ratio defined

for each soil organic matter pool at a given pH, and N being

either mineralized or immobilized to maintain that ratio. Nitro-

gen is released from decomposing soil organic matter as

ammonium (NHþ
4 ) and may be then immobilized or nitrified to

nitrate (NO�
3 ). Carbon and N may be lost from the soil by the

processes of leaching of NO�
3 , dissolved organic C, dissolved

organic N, denitrification to nitric oxide (NO) and N2O,

volatilization of ammonia, or crop off-take of NO�
3 and NHþ

4 .

Carbon and N may be returned to the soil by plant input,

application of inorganic fertilizers, atmospheric deposition or

organic amendments (e.g. manure, crop residues).

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12360
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ECOSSE simulates the soil water content of each layer using

a ‘tipping bucket’ approach based on the SUNDIAL model

(Bradbury et al., 1993; Smith et al., 1996). Water from precipita-

tion entering the soil forces water in the soil deeper into the

soil profile. Precipitation fills the uppermost soil layer with

water until it reaches field capacity. Any remaining precipita-

tion is then used to fill the next layer to field capacity. This pro-

cess is repeated until no precipitation remains or the bottom of

the profile is reached. Any precipitation water remaining after

filling all layers to field capacity is partitioned between drai-

nage (water leaving the soil profile) and excess, which is used

to fill layers to saturation from the bottom of the profile

upwards. This is performed using the observed depth of the

water table, the available water at saturation and weather data

to calculate the restriction to drainage (i.e. the fraction of the

remaining water that becomes excess), that is required to

achieve the observed water table depth. Water is also lost from

the top of the profile as evapotranspiration, which is estimated

using the Thornthwaite (1948) method.

The ECOSSE model has been thoroughly evaluated and

shown to simulate SOC change, N2O and CH4 emissions reli-

ably, for bioenergy crop transitions in the United Kingdom

using field data from Miscanthus, SRC and SRF field sites, as

described in Dondini et al., 2015, 2016a,b).

Spatial application of the ECOSSE model

The spatial simulations of the United Kingdom are carried out

on a 1 km grid basis giving a total of nearly 0.25 million grid

cells. Grid cells which contain inappropriate land for growing

bioenergy crops were excluded from the simulations based on

the UKERC 7 land-use constraints (Lovett et al., 2014). The

UKERC 7 constraints mask excludes 100 m grid cells that meet

one or more of the following criteria (Lovett et al., 2014): slope

≥15%; peat (soil C ≥ 30%); designated areas; urban areas, roads,

rivers; parks; scheduled monuments/world heritage sites;

woodland and natural habitats from LCM2007 (including acid,

neutral and calcarious grassland). We aggregated the UKERC 7

mask to 1 km, using the mode of the 100 m cells to determine

exclusions at the 1 km scale. We also disaggregated the wood-

land category in order to permit use of woodland for transi-

tions to SRF; we term this mask UKERC 7w. The land-use data

that were used to initialize the ECOSSE 1 km grid were aggre-

gated using the mode from the LCM2007 land cover from at

1 ha resolution in the UKERC mask (Lovett et al., 2014).

The simulation of each LUC was carried out for up to 5 dif-

ferent soil types in each grid cell to capture soil heterogeneity

at the subgrid cell level. All combinations of LUC from rota-

tional crops, permanent grass and forest to wheat, OSR, sugar

beet, Miscanthus, SRC and SRF were simulated, except for rota-

tional crops to wheat, OSR and sugar beet which, being types

of rotational crops, were considered to be equivalent to no

LUC. Three ‘null’ transitions for rotational crops, permanent

grass and forest were also simulated to provide results for

unchanged land-use for comparison.

The rotational crop land-use category represents land used

to grow arable crops and includes all-arable rotations and rota-

tions that include rotational or temporary grassland for part of

the rotation. The permanent grass land-use category represents

permanent, uncultivated grassland only. Rotational grass is not

a land-use and is part of rotational farming better represented

by the rotational crops category (which may include periods of

rotational grass).

Results were obtained using three different climate scenarios

for a 35-year period running from 2015 to 2050. Prior to each

simulation, the model was initialized to partition the SOC into

the different SOC pools based on the assumption that the SOC

in the soil column is at steady state under the land use given

for the start of the simulation.

Following initialization, the main simulation was executed.

This started with LUC from the initial land-use type to the

bioenergy crop. Any soil cultivation carried out during LUC

was simulated. As rotational cropland typically undergoes

annual cultivation, the model assumes there is no additional

cultivation required for the establishment of bioenergy crops.

In contrast, the model simulates soil cultivation for LUC from

permanent grass and forestry because these land-use types typ-

ically require ground preparation before bioenergy crops are

planted. The model simulates physical fragmentation of soil

organic matter resulting from cultivation by moving a propor-

tion of the C and N in the humus pool, (which has a slow

decomposition rate), to the DPM and RPM pools (which have

faster decomposition rates; Smith et al., 2010a). Redistribution

of soil organic matter during cultivation is simulated by

homogenizing the vertical distribution of the soil organic mat-

ter pools down to the cultivation depth – which might be

expected with inversion ploughing followed by harrowing as

ground preparation. The simulated cultivation depth for con-

version from forest and permanent grass is 0.5 and 0.3 m,

respectively.

After simulation of the cultivation associated with LUC, the

model simulates soil dynamics under the bioenergy crop. The

annual plant inputs of C and N to the soil are calculated from

the annual yield of the crop (provided as an input to the

model), using crop-specific ratios estimated from the literature.

For perennial bioenergy crops, the model simulates annual

yield dynamics over the lifetime of the crop to account for

reduced yields during establishment and peak yield later in the

crop life cycle. Yield dynamics are modelled using the lifetime

mean annual yield of the crop (as an input to the model) and

five crop-specific parameters:

• Ypeak-ratio – ratio of peak annual yield to lifetime mean

annual yield, used to calculate peak annual yield.

• Tpeak – time required for the crop to reach peak annual

yield.

• T0 – time spent at initial yield, before annual yield begins to

increase towards peak annual yield. Used to approximate a

sigmoidal growth curve.

• Y0-frac – initial yield as a fraction of lifetime mean annual

yield. This parameter is calculated from the other parame-

ters to ensure that the lifetime mean annual yield of the

crop is preserved.

• Lifetime – the lifespan of the crop.

The parameter values for each perennial crop, which are

based on expert opinion and informed by published studies

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12360
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such as Arundale et al. (2014), are given in Table 1. The simu-

lated yield dynamics are characterized by 3 stages: a period

spent at initial annual yield (SRF only), a period of linearly

increasing annual yield and a period spent at peak annual

yield. An example of the growth dynamics of each crop given

by the parameter values in Table 1 is shown in Fig. 1. The life-

time mean annual yields used as an input to the model are

taken from a number of sources described below.

The annual yield dynamics of perennial crops typically

follow a sigmoidal curve. Here, we employed a simple linear-

based approach to yield modelling to maintain model parsi-

mony. Miscanthus and SRC establish quickly and do not have a

very pronounced sigmoidal growth curve. Therefore, the linear

increase during establishment will only result in a small error

in the timing of plant inputs to the soil (and subsequent effects

on the timing of changes in SOC and GHG emission). For SRF,

which has a longer establishment time and a more pronounced

sigmoidal growth curve, we introduced an additional flat

growth phase at the start of establishment to better approxi-

mate the sigmoidal curve and minimize the error in the timing

of plant inputs.

Each perennial bioenergy crop was re-established after a 20-

year period (the estimated productive lifespan of the crop). It is

assumed that re-establishment does not involve further cultiva-

tion. This assumption was made because perennial bioenergy

crops can be re-established with only shallow soil disturbance

or very localized soil disturbance (McCalmont et al., 2015). Mis-

canthus crops can be re-established by herbicide application of

the existing crop followed by direct drilling of rhizomes, or

planting plugs grown from seed (Clifton-Brown et al., 2015).

Ploughing of Miscanthus can be avoided by exposing the rhi-

zomes on top of the soil so that they dehydrate and die (Caslin

et al., 2011a). The SRC can be removed by application of herbi-

cide followed by mulching of the stools (using a bush-hogger),

into the top 5–10 cm of the soil (Defra, 2004) and SRF may be

re-established by planting between previous stumps (McKay,

2011). The impacts of soil disturbance during re-establishment

of perennial bioenergy crops are poorly understood and

require further research (Grogan & Matthews, 2002). However,

as the re-establishment of these crops can be made with only

shallow soil disturbance (the top 5–10 cm), or very localized

disturbance (e.g. direct drilling of Miscanthus and replanting

SRF between stumps), we expect the impacts on SOC to be

small. Fertilizer was applied to Miscanthus and SRC at an

annual rate of 30 and 60 kg N ha�1, respectively, following rec-

ommended practice (Defra, 2010; Caslin et al., 2011a). Fertilizer

was applied to SRF at a rate of 45 kg N ha�1. No fertilizer was

applied to Miscanthus, SRC and SRF during the first 2 years

after planting, again following best practice guidelines (Defra,

2010; Caslin et al., 2011a).

Forest was assumed to be unfertilized. Rotational crops, per-

manent grass, wheat, OSR and sugar beet were assumed to be

fertilized at a rate equal to the annual crop N demand. Crop N

demand is a function of plant yield and the C:N ratio of the

plant. Modelled crop N demand is high for wheat because it

has a low C:N ratio and a relatively high yield. In contrast,

modelled N demand for permanent grass was significantly

lower because it has a higher C:N ratio.

For all land-use types, the changes in SOC and emissions of

GHGs were calculated for the top metre of the soil profile.

Only the top metre was considered because this is the depth to

which soil parameters are provided by the Harmonised World

Soil Database (HWSD; see below). Changes in SOC, CH4 and

Table 1 Yield model parameters for Miscanthus, SRC and

SRF. See text for an explanation of each parameter

Crop Ypeak-ratio

Tpeak

(years)

T0

(years) Y0-frac

Lifetime

(years)

Miscanthus 1.1 5 0 0.299 20

SRC 1.1 6 0 0.433 20

SRF 1.6 15 4 0.267 20

Fig. 1 Annual yield dynamics of Miscanthus, SRC and SRF over the 20-year lifespan of each crop, with a lifetime mean annual yield

of 10 odt ha�1. Lifetime mean annual yield is represented by the dashed grey line for comparison.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12360
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N2O resulting from LUC were calculated by subtracting the

results of the appropriate null transition from the LUC results,

so that the change could be attributed solely to the LUC. For

example, to calculate the impact of LUC from permanent grass

to SRC, the results from the permanent grass null transition

(i.e. grass remaining as grass) were subtracted from the perma-

nent grass to SRC results. Each grid cell value in the model

output represents the area-weighted mean of the simulations

carried out for each soil type in the grid cell.

Results are given for the whole of the United Kingdom on a

1 km grid basis and express the area-weighted average

obtained from simulations of the 5 most dominant soil types in

each grid cell. For consistency and ease of comparison, all

results (i.e. CH4, N2O, change in SOC and net GHG balance)

are reported in terms of CO2-equivalent values (CO2e), using

IPCC 100-year global warming potentials (GWPs; IPCC, 2001).

More recent IPCC reports have provided updated GWPs from

those given in the IPCC 2001 report, although, for consistency

with national inventory GHG emission estimates, we have used

the IPCC 2001 GWP values, following the recommended prac-

tice for national GHG inventories. Results show the cumulative

total of each output variable and are relative to the value

obtained if no transition had occurred (hence results directly

show the effect of the transition).

Soil data

The HWSD version 1.2 was used to provide initial soil condi-

tions in the model (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012).

The HWSD provides soil data to a depth of 1 metre at a resolu-

tion of 30 arc s (approximately 1 km), for the dominant soil

types in each grid cell; we reprojected this to the British National

Grid using methods described by Ordnance Survey (Ordnance

Survey, 2010). The soil properties used from this database to

drive ECOSSE were as follows: organic C content, bulk density,

pH, and sand, silt and clay faction. The HWSD does not include

information on the water-holding capacities of soils so these

were estimated using British Soil Survey pedotransfer functions

(Hutson & Cass, 1987), which performed well in evaluations

(Donatelli et al., 1996; Givi et al., 2004). The HWSD also provides

the percentage of grid cell area covered by each soil type. The

ECOSSE model is run for each dominant soil type in each grid

cell and the output area-weighted by the percentage cover in

each grid cell to calculate its mean response.

Climate data

ECOSSE requires precipitation and air temperature data which

are used to drive the soil water model and to determine tem-

perature-based rate modifiers for various soil processes. The

meteorological driving data was taken from the UKCP09 Spa-

tially Coherent Projections (Murphy et al., 2009). UKCP09 pro-

vides average monthly temperature and precipitation in a

25 km grid for overlapping 30-year periods centred on decades

ranging from the 2020s to the 2080s, for high, medium and low

emissions scenarios; again, we reprojected this to the British

National Grid using methods described by Ordnance Survey

(Ordnance Survey, 2010).

Yield data

ECOSSE requires yield data for each land-use type in order to

estimate the monthly plant inputs to the soil. Yield data for the

bioenergy crops have been obtained from a range of sources of

varying spatial resolution. Baseline yields for first-generation

crops were obtained from EUROSTAT (2014), which provides

mean wheat and OSR yields across 12 NUTS (Nomenclature of

Territorial Units for Statistics) regions in the United Kingdom,

and a single mean national yield for sugar beet, based on Defra

farm surveys. The baseline yield values for the rotational crop

land-use category follow those of wheat.

Yield estimates for wheat, OSR and sugar beet under differ-

ent climate scenarios were obtained by adjusting the baseline

yields using the Miami model (Lieth, 1975). Miami is an empir-

ical net primary production (NPP) model that estimates annual

NPP from mean annual temperature and annual precipitation.

The Miami estimate of NPP was calculated for each decade in

each grid cell using the same UKCP09 climate data that was

used for the ECOSSE simulations. The percentage change in

NPP relative to the baseline Miami NPP was applied to the

baseline yield data to adjust the yield for each climate scenario.

Yield estimates for permanent grass and forest are obtained

using NPP estimates from Miami, which are then linearly

rescaled according to observed peak yields (Living

Countryside, 2013) to reflect differences in grass and forest

productivity.

Lifetime mean annual yield estimates for Miscanthus, SRC

and SRF were obtained from simulations using the models Mis-

canFor (Hastings et al., 2009), ForestGrowth SRC (Tallis et al.,

2013) and ESC-CARBINE (Thompson & Matthews, 1989; Pyatt

et al., 2001), respectively. The yield predictions have been

obtained using the same UKCP09 climate and HWSD soil data

used as inputs to ECOSSE. These models were used due to

their validated accuracy and use of compatible data. The life-

time mean annual yields were provided for each decade

because the UKCP09 climate data provide long-term average

climate values centred on each decade. As an ECOSSE simula-

tion progresses, the annual yield for each year of the simulation

is calculated from the lifetime mean annual yield for the cur-

rent decade. Therefore, if the lifetime mean annual yield

changes between decades, this is reflected by a change in the

annual yield calculated within the model.

SRC was represented by willow. Although the yield mod-

elling study of Hastings et al. (2014) found that SRC poplar out-

performed SRC willow in almost all regions within Great

Britain, willow remains the SRC species currently used in com-

mercial plantations in the United Kingdom and thus, despite

lower yields, is used to represent SRC here. SRF was repre-

sented by poplar, because Hastings et al. (2014) found that

poplar outperformed all other SRF species included in the

study except for Sitka spruce in the Scottish Highlands and

Pennines (areas which are mostly excluded by the UKERC con-

straints mask). The other SRF species included in the study

were as follows: aspen (Populus tremula L.), black alder (Alnus

glutinosa L.), European ash (Fraxinus excelsior L.), sitka spruce

(Picea sitchensis [Nong.] Carr.) and silver birch (Betula pendula

Roth). The lifetime mean annual yields of SRF poplar across

Great Britain were at least double those of other species. Given

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12360
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no clear commercial benefits of selecting other SRF species over

poplar, we assumed the strong commercial incentive offered

by the much higher yields will mean that poplar will be the

dominant SRF species in the United Kingdom. Planting of

lower yielding SRF species to avoid pest and disease outbreaks

would result in consequent lower inputs to the soil.

The spatial distributions of yield used for each crop as driver

for the ECOSSE model runs are presented in Fig. 2, showing

mean annual yields in a single decade (2030s). Mean decadal

yields changed by <2 oven dry tonnes (odt) ha�1 yr�1 over the

35-year study period for any single crop (data not shown).

If LUC leads to an increase in plant C inputs to the soil, the

SOC content will gradually increase over time until a new equi-

librium SOC content is reached (assuming all other factors

remain equal). In ECOSSE, the quantity of new plant material

entering the soil organic matter pools is determined by the

amount of plant biomass (calculated from yield), minus the

proportion of biomass that is removed during harvest.

Across the simulation area, SRF, Miscanthus and sugar beet

are the highest yielding bioenergy crops with United Kingdom

mean annual yields of 10–12 odt ha�1. Based on reported har-

vest index values (Table 2), the model assumes that 75% of

sugar beet biomass is removed during harvest, compared with

64% for Miscanthus and 60% for SRF. The low harvest index

(relative to sugar beet) and high yields mean that SRF and Mis-

canthus have, on average, higher plant inputs to the soil than

other bioenergy crops.

Conversion to bioenergy crops can also lead to a change in

the quality of plant inputs to the soil. Plant residues from peren-

nial grasses and woody plants such as Miscanthus, SRC and SRF

are typically slower to decompose than residues from annual

crops such as wheat, OSR and sugar beet (due in part to the resi-

dues having a higher C:N ratio). Slower decomposition rates

reduce the rate of SOC loss. In the model, differences in crop

residue decomposition rates are simulated through differential

allocation of plant residues to two SOC pools: the DPM and

RPM pools. The DPM pool has a faster decomposition rate than

the RPM pool. To reflect the slower decomposition rates, resi-

dues from Miscanthus, SRC and SRF have a higher RPM:DPM

ratio than residues from wheat, OSR and sugar beet.

Results

Differences in net GHG balance between the climate

scenarios for land-use transitions to bioenergy crops are

Fig. 2 Spatial distribution of modelled mean annual yield of bioenergy crops as odt ha�1 yr�1 (where odt is oven dry tonnes) in the

2030s under the UKCP09 medium emissions climate scenario. Miscanthus, SRC and SRF yields were obtained from simulations using

the models MiscanFor, ForestGrowth SRC and ESC-CARBINE, respectively. Defra yield statistics from 2000 to 2008 were used to estab-

lish baseline yield values for wheat, OSR and sugar beet, which were then adjusted for future climate using the Miami model (see text).

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12360
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very small in comparison with the effects of LUC, being

within �2 t CO2e ha�1 over the 35-year period for any

given transition. Given this very minor impact of cli-

mate to 2050, all results presented are for the medium

climate scenario, and all results refer to the period

2015–2050 unless otherwise stated.

Net GHG balance represents the combined effects of

changes in N2O, CH4 and SOC and is therefore the most

comprehensive measure of bioenergy impacts; a negative

GHG balance represents removals from the atmosphere

(i.e. beneficial), and a positive GHG balance represents

emissions to the atmosphere (i.e. detrimental). Only sec-

ond-generation bioenergy crops (Miscanthus, SRC and

SRF) showed any beneficial changes in soil GHG balance;

all conversions to first-generation bioenergy crops

(wheat, sugar beet and OSR) showed a detrimental

impact on net GHG balance (Figs 3–5), except of course
for ‘conversion’ from rotational crops, where a null tran-

sition is assumed (i.e. zero GHG balance).

Of the three initial land uses, conversion from rota-

tional crops has the most favourable net GHG balance

(Fig. 3). Conversion of rotational crops to SRF, SRC and

Miscanthus each showed a beneficial response in almost

all grid cells, with mean net GHG balance values of

�126.9, �37.8 and �76.4 t CO2e ha�1 over 35 years,

respectively. In contrast, all conversions from perma-

nent grass result in a detrimental change in net GHG

balance in all grid cells except for SRF, which shows a

small beneficial (>�21 t CO2e ha�1) change over large

parts of the West Midlands, East Midlands and East

Anglia (Fig. 4). Transitions from forest show detrimen-

tal soil net GHG balance in all grid cells with mean val-

ues of 88.7, 128.6 and 102.9 CO2e ha�1 over 35 years for

SRF, SRC and Miscanthus, respectively (Fig. 5). Overall,

conversion of rotational crops to SRF is the most favour-

able conversion because it has the most beneficial net

GHG balance over the largest area (Fig. 3). However, in

some areas, most notably in parts of south-west Eng-

land, southern England, south and west Wales, and in a

narrow band north and south of the Humber, Miscant-

hus presents an equal or slightly better bioenergy oppor-

tunity than SRF (see the Discussion for further

consideration of this). In contrast, SRC does not show a

more beneficial net GHG balance than SRF or Miscant-

hus in any areas of significant size (Fig. 3).

The mean, minimum and maximum cumulative

changes in SOC (expressed as loss of SOC, i.e. CO2

emissions), in N2O emissions and in CH4 emissions

from 2015 to 2050 following LUC from rotational crops,

permanent grass and forest to all energy crops are

shown in Table 3.

Conversion of land to bioenergy crops shows a large

spatial and temporal variation in net GHG balance and

its components: SOC, N2O and CH4. The impact of

land-use change on net GHG balance depends upon the

Table 2 Harvest index parameter values of bioenergy crops.

Note that the wheat harvest index includes the harvest of both

grain and straw

Crop

Harvest

index Source

Miscanthus 0.64 Zhuang et al.(2013)

Oilseed rape 0.35 Kjellstr€om & Kirchmann (1994),

Dreccer et al.(2000), HGCA (2014)

SRC 0.6 Caslin et al.(2011b)

SRF 0.6 No data available so assumed to be

the same as SRC

Sugar beet 0.75 Tsialtas & Karadimos (2003),

Oritz et al.(2012)

Wheat 0.77 White & Wilson (2006),

Stoddart & Watts (2012)

Fig. 3 Greenhouse gas emissions when rotational crops are converted to second-generation energy crops.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12360
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Fig. 4 Greenhouse gas emissions when permanent grass is converted to energy crops.

Fig. 5 Greenhouse gas emissions when forest is converted to energy crops.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12360
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type of land-use being converted, the type of bioenergy

crop planted, the geographic location and the time since

conversion. Overall, changes in SOC content have the

largest impact on net GHG balance, followed by

changes in N2O, then CH4 emissions (Table 3).

Figure 6 shows the SOC, N2O and CH4, respectively,

for one transition, rotational crops to SRF, to show the

relative influence of each component on the total net

GHG balance (Fig. 6).

In general, most of the benefits to net GHG balance

from favourable conversions are realized in the first 15–
20 years following conversion; after this time, the rate

of decrease in net GHG balance declines as SOC content

approaches a new equilibrium (Fig. 7).

The changes in mean cumulative net GHG balance in

soil emissions over time for each land-use transition are

shown in Fig. 7. Conversion from rotational crops to

Miscanthus, SRC and SRF show a decrease in net GHG

balance in soil emissions over the 35-year simulation

period, although there is little change during the first

5 years following conversion of rotational crops to SRC

(Fig. 7). By contrast, all conversions from permanent

grass and forest show a rapid increase in net GHG bal-

ance in soil emissions 5 years after LUC (Fig. 7). After

the first 5 years, the net GHG balance of most LUCs

continues to increase at a slower, broadly linear rate.

However, in 2030 (15 years after conversion), the net

GHG balance of permanent grass to SRF begins to

decrease (Fig. 7).

Discussion

Land-use change emissions, such as those reported

here, make a significant contribution to the overall GHG

balance of energy crop transitions and are a relatively

poorly constrained term in many bioenergy life cycle

analyses. We discuss our findings further below.

Effects of land-use change

Conversion of land to bioenergy crops shows a large

spatial and temporal variation in net GHG balance and

its components; SOC, N2O and CH4. The impact of LUC

on net GHG balance depends upon the type of land-use

being converted, the type of bioenergy crop planted and

the geographic location. Overall, changes in SOC have

the largest impact on net GHG balance in soil emissions,

followed by N2O and then CH4, accounting for the

GWP of each flux.

Changes in soil organic carbon

Results for 2015 to 2050 show that both the initial and

target land-use type have a very large impact on meanT
ab
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Fig. 6 All panels show the transition from rotational crops to SRF: panels a, b and c showmaps of CO2e for SOC (a), N2O (b) and CH4 (c).

Fig. 7 Time series of mean cumulative net GHG balance resulting from land-use change to bioenergy crops in 2015 under the

medium emissions climate scenario. Shaded areas show the 95% confidence interval of the distribution of modelled results (due to

spatial variation) from the simulations across the United Kingdom. Error bars show the 95% confidence interval of estimated error

based on the comparison of modelled and measured net GHG balance from site-level modelling studies (Dondini et al., 2015, 2016a,b).

The red portion of each panel shows a net GHG emission, the green portion shows a net GHG sink.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12360
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change in SOC. Conversion of rotational crops to Mis-

canthus, SRC and SRF and conversion of permanent

grass to SRF are the only LUCs that lead to extensive

beneficial changes in SOC. By contrast, all conversions

from permanent grass to non-SRF bioenergy crops and

all conversions from forest lead to mostly detrimental

changes in SOC. These findings are broadly in-line with

those of empirical and other modelling studies. Guo &

Gifford’s (2002) review of data from 74 LUC publica-

tions shows that conversion from arable land to planta-

tion forest, secondary forest and pasture leads to

significant increases in SOC, whereas conversion of for-

est and pasture to crop leads to large decreases. Murty

et al. (2002) and Wei et al. (2014) also reported signifi-

cant decreases in SOC following conversion of forest to

cultivated agricultural land. For bioenergy crop transi-

tions, the recent meta-analysis of Harris et al. (2015) that

reported only empirical and not modelled data revealed

in contrast to the findings here, broadly neutral SOC fol-

lowing LUC from grassland to SRC. For LUC from

grassland to Miscanthus, the meta-analysis supports the

findings here with SOC declining by 10.9 (�4.3) %. The

literature survey of McCalmont et al. (2015), of the envi-

ronmental impact of Miscanthus plantations, showed a

significant increase in SOC when LUC from arable and

a slight decrease for LUC from grasslands. The time-

scale of SOC losses in these studies was similar to those

in our study, with most of the SOC loss occurring in the

first 10–20 years after conversion. After this period,

rates of SOC loss decline as the SOC approaches a new

equilibrium.

Cultivation. As rotational cropland typically undergoes

frequent cultivation, the model assumes that no addi-

tional cultivation is required for the establishment of

bioenergy crops. By contrast, the model simulates soil

cultivation for conversion of permanent grass and for-

estry because these land uses typically require ground

preparation before bioenergy crops are planted. Cultiva-

tion of relatively undisturbed soil, such as soil under

permanent grass and forest, usually has a large detri-

mental impact on SOC (Guo & Gifford, 2002), and

McCalmont et al. (2016) also showed a slight decrease in

SOC for LUC from grasslands. Cultivation physically

fragments and redistributes soil organic matter, acceler-

ating its decomposition, leading to a large release of

CO2 and subsequent decrease in SOC (Grandy &

Robertson, 2006). As a rule, minimizing soil disturbance

to the extent possible will minimize adverse impacts on

SOC. The model captures this loss of SOC by simulating

cultivation as described in the Methods section. This

cultivation is responsible for the large detrimental

change in SOC following LUC from permanent grass

and forest (Figs 4 and 5). However, in the case of

perennial Miscanthus, SRC and SRF, this cultivation

occurs only once for each 20-year crop cycle. It is possi-

ble in some cases for this detrimental effect to diminish

slightly over time, where a higher yielding crop may

produce greater SOC inputs than the previous land use,

thus counterbalancing to some extent the effect of the

initial soil disturbance, as evident in the grass to SRF

transition in Fig. 7.

Plant inputs. The difference in quantity and quality of

plant inputs is the principal reason behind the different

SOC responses shown by each bioenergy crop type. As

the quantity of plant inputs is partially based on yield,

the spatial pattern of change in SOC broadly reflects the

spatial pattern of yield. This is particularly apparent

with Miscanthus, which shows a distinct area of high

yield (as estimated by the MiscanFor model) in southern

England and north and south of the Humber estuary

(Figs 3–5), with a corresponding large increase in SOC

in these areas following conversion from rotational

crops (Fig. 3). The high yields in these two areas are

due to the prevalence of chalky soils with high soil

water-holding capacities, which the MiscanFor model

predicts are favourable for the growth of Miscanthus

(only MiscanFor treats these chalky soils differently). As

SOC change is largely determined by yield (with higher

yields giving higher C returns to the soil than lower

yields), low yields can lead to a decline in SOC. The rel-

atively detrimental impact of the permanent grass to

SRC transition is largely driven by low predicted yields

of SRC willow (see Fig. 2). A target for management of

perennial energy crops is, therefore, to achieve the best

possible yield by selecting the most appropriate energy

crop and cultivar for the local situation, as long as this

can be made without excessive N fertilizer use, which

would lead to increased N2O emissions. The difference

between potential and reported yields in these second-

generation bioenergy crops – the so-called yield gap

remains large (Allwright and Taylor, 2015), reflecting

the limited artificial selection and breeding in these

crops, compared to annual food crops and suggesting

that future yield increase may be dominated by the sup-

ply of new germplasm through next-generation molecu-

lar breeding using techniques such as genome editing

(Allwright and Taylor, 2015). Improved yield would

have a large impact on the results reported here.

Changes in N2O emissions

Beneficial changes in N2O emissions following conver-

sion of rotational crops to Miscanthus, SRC and SRF

occur because of reductions in N fertilizer inputs. In

ECOSSE, reduced N fertilizer inputs lead to decreased

N2O emissions because: (a) the denitrification rate slows

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12360
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as the NO�
3 concentration in the soil decreases and (b)

the proportion of denitrified N emitted as N2O

decreases as NO�
3 concentration in the soil decreases. In

contrast to conversions from rotational crops, conver-

sion of forest to wheat shows the greatest increase in

N2O because it involves a transition from a land-use

that receives no fertilizer to a crop that receives a large

amount of fertilizer (due to wheat’s high N demand).

Beneficial changes in N2O emissions following con-

version from rotational crops show larger reductions in

N2O emissions in the west of the United Kingdom than

the east (Fig. 6b). This is probably due to higher precipi-

tation rates in the west leading to higher soil water con-

tents. In the model, higher soil water content leads to

two contrasting effects on N2O emissions; firstly, the

denitrification rate increases exponentially as the soil

water content increases, and secondly, the proportion of

denitrified N emitted as N2O decreases linearly as soil

water content increases. The exponential increase in the

first process outweighs the linear decrease of the second

process, leading to a simulated net increase in N2O

emissions as soil water content increases. This response

reflects empirical evidence for N2O emissions increasing

as soil water content increases (e.g. Schindlbacher et al.,

2004; Luo et al., 2013). The greater reductions in N2O

following conversion from rotational crops in the west

of the country are, therefore, likely due to higher precip-

itation rates leading to higher soil water contents and in

turn, higher N2O emissions. Reductions in N fertilizer

inputs in high precipitation grid cells will therefore lead

to greater beneficial reductions in N2O emissions.

The initial conversion of forest to pasture and crop-

land (Smith & Conen, 2004) and permanent grass to

bioenergy crops (Gelfand et al., 2011; Niki�ema et al.,

2012; Palmer et al., 2013; Zenone et al., 2015) causes a

large initial N2O emission. Our results show a large

emission of N2O in the first 5 years after conversion

from permanent grass and forest to all bioenergy crops.

This arises due to the simulation of cultivation during

LUC from permanent grass and forest due to soil dis-

turbance increasing soil organic matter mineralization

rates. After 5 years, the modelled rates of change in

N2O emissions decline. The large initial rates of N2O

emissions arise for similar reasons to the large SOC

decreases that follow certain conversions; initial cultiva-

tion of land during LUC physically fragments and

redistributes soil organic matter, accelerating its decom-

position, releasing inorganic N that is used by denitrify-

ing soil microbes leading to N2O release (Grandy &

Robertson, 2006). The subsequent slowing down of

increases in N2O emissions occurs as the rapidly

decomposing soil organic matter resulting from cultiva-

tion becomes depleted and the N2O emissions move

towards the background rate. Changes in N2O

emissions following conversions from permanent grass

to OSR, Miscanthus, SRC and SRF start to level off and

decrease after approximately 5 years. This occurs

because the modelled N fertilizer inputs to OSR, Mis-

canthus, SRC and SRF are lower than for permanent

grass. Recent work with Miscanthus demonstrates that

the yield benefits of N fertilization were very small and

in terms of GHG emissions did not offset increased soil

N2O emissions (Roth et al., 2015).

Changes in CH4 emissions

The simulated CH4 fluxes are very small for all land-use

transitions throughout the simulation area. Owing to

the absence of data for water table depth, we assumed

that all soils in the simulations are freely drained, with

no water table. This assumption could result in some

uncertainty in the simulated CH4 fluxes because CH4

emissions are much higher from saturated than unsatu-

rated soils (Segers, 1998). In the United Kingdom,

observed CH4 fluxes are much higher on organic soils

(which are typically poorly drained in their natural

state) than on mineral soils and are the main source of

soil CH4 emissions (Levy et al., 2012). Highly organic

soils (and therefore the greatest sources of CH4) were

excluded by the UKERC constraints mask from the sim-

ulations because they are unsuitable for growing bioen-

ergy crops.

Moreover, even if significant areas of poorly drained

land with high CH4 emissions are present within the

simulated area, large changes in those CH4 emission

rates resulting from conversion to bioenergy crops are

only likely to occur if the land is drained for bioenergy

crops. We are not aware of any planned or actual drai-

nage of extensive areas of land for bioenergy crops.

Drainage is unlikely to take place on soils currently

under rotational crops because the land will already

have been drained (if it was necessary). Also, SRC wil-

low and poplar are suitable for planting on soils with a

shallow water table (1–2 m deep), with willow able to

cope with water-logging, making it suitable for planting

in areas with a high water table or areas prone to flood-

ing (Hall, 2003). SRC therefore provides a bioenergy

option that is unlikely to require the drainage of water-

logged land.

For the reasons described above, the uncertainty in

the CH4 emissions associated with the assumption of a

freely draining soil is relatively small and simulated

CH4 fluxes are representative of the land suitable for

bioenergy conversion. However, if extensive areas of

water-logged land were to be drained for the establish-

ment of bioenergy crops, it would be useful to explore

the impacts on CH4 fluxes (and changes in SOC and

N2O emissions) in more detail.

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12360
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Effects of soil

The ECOSSE model requires input data for several soil

properties: initial SOC content, pH, bulk density and

clay content. These properties influence a range of pro-

cesses within the model.

SOC content influences the amount of C lost as CO2

during decomposition. All other factors being equal,

soils with high organic C content will produce propor-

tionally higher CO2 emissions than a soil with low

organic C content. We therefore expect soils with high

organic C content to show greater sensitivity to changes

in SOC resulting from LUC (e.g. due to cultivation).

However, whilst the absolute loss of C due to cultiva-

tion is expected to be higher in soils with high organic

C content, the relative loss of C may be lower if the clay

content is higher.

SOC content increases as the clay content increases

(Burke et al., 1989). This increase occurs because clay

particles strongly adhere to organic matter slowing

down the decomposition process, and because clay

forms aggregates that physically protect SOC from

microbial decomposition (Rice, 2002). In ECOSSE, the

effects of clay content on soil organic matter decomposi-

tion is modelled by altering the proportion of C released

as CO2 during decomposition (i.e. the efficiency of

decomposition). As clay content increases, a smaller

proportion of decomposed C is lost as CO2 (i.e. the effi-

ciency of decomposition increases), and a greater pro-

portion is retained in the biomass and humus soil

organic matter pools. Therefore, when clay-rich soils are

cultivated during LUC (causing a large proportion of

SOC to be moved from soil organic matter pools with a

faster turnover rate to soil organic matter pools with a

slower turnover rate), we would expect the modelled

relative SOC losses to be lower than for soils with low

clay content. This behaviour is in agreement with

empirical evidence (e.g. Burke et al., 1989).

A significant effect of soil pH on the rate of decompo-

sition has been observed in many studies (e.g. Hall

et al., 1998; Andersson & Nilsson, 2001). In ECOSSE, the

pH rate modifier for aerobic decomposition decreases

linearly as pH drops below 4.5. For pH values >4.5, the
rate modifier is set to 1 (i.e. has no effect upon the

decomposition rate). Soils with a pH of <4.5 are typi-

cally highly organic. We therefore expect variations in

pH between soil types to have very little impact on the

model outputs because highly organic soils have been

excluded from the simulation area.

In ECOSSE, bulk density affects the rate of CH4 oxi-

dation (i.e. consumption of CH4). Empirical evidence

shows that soils with a low bulk density tend to have

higher rates of CH4 oxidation (Borken & Brumme, 1997)

because low bulk density soils are more permeable,

allowing atmospheric CH4 and oxygen to diffuse more

freely into the soil (D€orr et al., 1993). Variation in bulk

density in the simulated soils is very unlikely to have a

significant effect on the results because (a) peat soils,

which have a much lower bulk density (and therefore

much higher potential oxidation rates than mineral

soils), have been excluded from the simulation; (b) the

simulated soil CH4 production rates are very low so it is

not possible for oxidation of CH4 to significantly affect

the net GHG balance.

Rotational grass

The permanent grass land-use type used in these simu-

lations represents permanent, uncultivated grassland.

Grassland, however, may also be temporary, used in

rotation with arable crops, and in these circumstances

can be regarded as a crop within an arable rotation. Per-

manent grassland is the most abundant type of grass-

land in the United Kingdom, covering 5.3 million ha in

2010, compared to 1.1 million ha of temporary (mostly

rotational) grassland (Khan et al., 2011) at any one time.

Rotational grassland in any given year would be catego-

rized as arable crops in different years, so the 1.1 mil-

lion ha in any year represents a snapshot of the area of

rotational grass. As such, rotational grass is not a land

use; it is simply one component of rotational farming,

which includes all-arable rotations as well as grass-ara-

ble rotations. Rotational grassland is usually repre-

sented as a crop within a rotation in most existing soil

organic matter models and in ECOSSE is assumed to be

a subset of arable rotational land. Permanent grassland

represents a separate land-use transition as this land is

only used for grass/livestock production. Rotational

grass (by definition) occurs on the same land as is used

for growing arable crops, so bioenergy conversion on

rotational grass is equivalent to removal of land used

for arable production. Rotational grassland can there-

fore be simulated in ECOSSE in the same way as arable-

only rotations.

It is expected that rotational grassland would behave

in a similar way to arable land in terms of net GHG

response to LUC to bioenergy crops because a) it under-

goes frequent cultivation and b) it typically receives

more fertilizer than permanent grassland. This expecta-

tion is supported by empirical evidence. Long-term

experiments at the Woburn Research Station (run by

Rothamsted Research) in the United Kingdom found

that conversion of continuous arable to rotational grass-

land (in this case either a 3-year grass or grass–clover
ley followed by two arable crops in a 5-year cycle),

resulted in only a 10–15% increase in SOC after 60 years

(Johnston et al., 2009). By contrast, the conversion of ara-

ble land to permanent grassland at the Rothamsted

© 2016 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., doi: 10.1111/gcbb.12360

GHG EMISSIONS FROM UK ENERGY CROP TRANSITIONS 13



Research Station resulted in a doubling of organic mat-

ter (indicated by total N), in 50 years (Johnston et al.,

2009). The small observed increase in SOC under rota-

tional grassland suggests that the response of rotational

grassland to LUC would fall between that of arable and

permanent grass, but will be close to the all-arable rota-

tions represented by our rotational crops category.

Uncertainty

There are a number of uncertainties associated with the

modelled GHG balances. Uncertainty in national scale

simulations has two components; uncertainty arising

from the model and uncertainty arising from reduced

detail and precision in data available at national scale

compared to data available at the field scale. Uncer-

tainty arising from the model was estimated as part of

the site-specific modelling exercise reported in Dondini

et al. (2015, 2016a,b). Here, we focus on uncertainties

arising from the use of national scale data.

Uncertainty due to spatial and temporal resolution. The spa-

tial and temporal resolutions of the driving data sets are

given in Table 4. Due to the reduced detail of the

inputs, the uncertainty in simulations at the national

scale is likely to be greater than at the field scale. For

example, in croplands, detailed management factors

such as sowing date and timing and rate of fertilizer

applications cannot usually be specified when the reso-

lution of the simulations is larger than the size of the

management unit. The resolution of the simulation here

was a 1 km2 grid cell, whereas the size of a manage-

ment unit might be a 5 ha (0.05 km2) field, so there will

be many different values for the management factors

within each 1 km2 cell. For example, the rate of N

fertilizer application to grassland varies considerably

according to the clover concentration in the grass sward,

livestock stocking density and soil N status (Defra,

2010).

Uncertainty in national scale simulations is also

greater than at field scale due to the reduced precision

of the input data. For example, the C content of the soil

in a 5 ha field can be precisely measured and the error

in the measurement defined using replicates, whereas at

the national scale the soil C content for grid cells is esti-

mated from typical or averaged soil C values for the

major soil types identified in the cell (e.g. Batjes, 2009).

The uncertainty due to the reduced detail and preci-

sion of data available at the national scale can be quanti-

fied by evaluating the model at field scale, but using

input drivers that are available at national scale (as per-

formed for the error bars in Fig. 7).

Uncertainty due to soil. The uncertainty associated with

the use of national scale soil data was quantified by sim-

ulating 40 paired land-use transition sites (Rowe et al.,

2016), using measured soil parameters and soil parame-

ters obtained from the HWSD. A statistical analysis

(data not shown) of simulations using the HWSD inputs

across the 40 field sites shows that there was a good

correlation between modelled and measured SOC

(0–100 cm depth), when using the measured soil param-

eters (r = 0.92), and when using the HWSD parameters

(r = 0.79). In both cases, there was no significant model

error and no significant model bias.

Due to the nature of the HWSD data, where the loca-

tions of soils within each grid cell are unknown, it is not

possible to define which HWSD soil type corresponds

to a given field site, or whether the soil type of the field

site is within the dominant soils reported in the HWSD.

Despite this, there was a good correlation between mod-

elled and measured values and a lack of model bias

when using HWSD parameters as inputs. This suggests

that uncertainty in model results arising from the use of

HWSD data is fairly small.

A similar evaluation of national scale uncertainty

using ECOSSE and National Soils Inventory of Scotland

soil data to simulate SOC at 60 resampled field sites in

Scotland was carried out by Smith et al. (2010b). That

study found a very strong correlation between modelled

and measured SOC (r = 0.97). The correlation was

higher in the Smith et al. (2010b) study than the current

study (r = 0.97 vs. r = 0.79). Smith et al. (2010b)

obtained a higher correlation probably because the soil

type at each field site could be matched to the corre-

sponding soil type in the national soil database they

used.

Initial land use was estimated from the LCM2007 data

at 100 m resolution which was aggregated by mode to

Table 4 Spatial and temporal resolution of driving datasets

used in the spatial simulations

Input data Spatial resolution

Temporal

resolution

Harmonised

World

Soil Database

30 arc s (approx. 1 km

grid cells)

N/A

UKCP09

climate

projections

25 km grid cells 30-year

averages

Crop yield NUTS 1 regional averages

for wheat, and oilseed rape,

national average for

sugar beet; 1 km grid cells

for Miscanthus,

SRC and SRF, 25 km grid cells for

permanent grass and forest

Annual
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1 km resolution to match the HSWD data. However, as

the HSWD assigns up to 10 soil types and their propor-

tion to each 1 km 9 km cell, it is not spatially explicit

so that matching a soil type to land use could be

ambiguous as we are only considering one initial land

use per grid block and not considering the proportion

of each land cover in the cell. In addition, land cover is

usually associated with a soil type, for example podsols

with forest and brown earths with arable land, and with

the data available this level of detail and precision is

not possible. In this way, a small number of unlikely

combinations of soil type and initial land use may have

been included in the average grid results. This will need

future work to resolve.

Uncertainty due to yield. Climate variability and changes

in the frequency and severity of extreme events can

have significant, nonlinear impacts on crop yields

because crops exhibit threshold responses to stress fac-

tors (Porter & Semenov, 2005; Trnka et al., 2014). There-

fore, the lack of short-term climate variation in the

UKCP09 climate projections presents a potentially large

source of uncertainty in the predicted yields and, subse-

quently, the bioenergy GHG balances (Hastings et al.,

2009).

None of the yield models used in this study explicitly

account for the effects of atmospheric N deposition on

productivity; all considered the yield with optimum N

supply and the crops were not, therefore, N limited.

Within the simulated area of the United Kingdom, N

deposition typically adds between 10 and 30 kg N

ha�1 yr�1 (Fowler et al., 2004). However, we do not

expect this level of N input to significantly affect the

ECOSSE model outcomes for two reasons. Firstly, the

yield models have been calibrated using UK field mea-

surements of crops subjected to atmospheric N deposi-

tion, so the effects of N deposition are to some extent

implicitly captured by the models. Secondly, farmers

may adjust the rates of N fertilizer applied to crops

according to the N deposition rate (Jones et al., 2014).

For example, UK wheat farmers are advised to increase

their Soil N Supply index by 20 kg N ha�1 to allow for

N deposition and the Defra Fertiliser Manual (Defra,

2010) factors in atmospheric N deposition (HGCA,

2009). Therefore, in fertilized cropping systems, the

effects of N deposition may be largely mitigated by

adaptation of fertilizer practices.

Levels of atmospheric N deposition in the United

Kingdom are currently in decline due to reduced N

emissions (Jones et al., 2014), which could lead to

reduced crop productivity. However, it is expected that

fertilizer and other crop management practices will

adjust to compensate for this reduction and so maintain

the yields predicted by the models.

Further uncertainty arises because the crop yield pro-

jections are derived from several different sources

which vary in spatial resolution, and, in the case of

modelled values, the level of sophistication of the

model. For example, the wheat and OSR yields are

based on Defra average yield statistics for 12 regions in

the United Kingdom (the NUTS level 1 regions),

whereas sugar beet yields are based on a single national

average yield value. Future wheat, OSR and sugar beet

yields are obtained by modifying the baseline yield

observations with a simple, empirical model, Miami

(Lieth, 1975), whereas Miscanthus yield projections are

obtained using a more complex, process-based model,

MiscanFor (Hastings et al., 2009).

The crop yield projections are based on models that

are parameterized and calibrated for existing cultivars

and current management practices. However, crop

breeding and improvements in management practices

will likely lead to increases in crop yield over time (All-

wright and Taylor, 2015). In addition, the yield models

do not consider the impact of pests and disease, nor

extreme weather events.

These sources of uncertainty in yield forecasts are dif-

ficult to quantify, either due to lack of data (e.g. changes

in the frequency of extreme climate events), or because

they are inherently uncertain (e.g. impacts of future

crop breeding), although it is likely that an increase in

crop yield of 10% per decade would not be unreason-

able for these largely unimproved crops and this could

have a significant impact on model outputs (Allwright

and Taylor, 2016). Because these uncertainties and their

impact on GHG balance estimates we tested the sensi-

tivity of the bioenergy GHG balances to changes in

yields. The main findings from this sensitivity analysis

were (a) for conversions from permanent grass and for-

est, yield increases of up to 50% were not sufficient to

change a mean detrimental change in SOC to a mean

beneficial change in SOC; (b) yield increases of up to

50% of any given bioenergy crop were generally insuffi-

cient to alter the crop’s ranking in terms of changes in

SOC, even when the yields of all other bioenergy crops

were left unchanged; and (c) SRF and Miscanthus

showed the greatest sensitivity to proportional changes

in yield because they have the highest yields within the

simulated area.

Although changes in estimated yields would certainly

affect the total area of land favourable for conversion to

bioenergy crops, our findings suggest that the broad

conclusions inferred from the modelling results would

remain unchanged.

Uncertainty due to fertilizer use. A large number of fac-

tors affect the amount of N fertilizer applied to a crop

including the soil N status, expected crop N demand,
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weather, soil texture, regulations (e.g. in nitrogen vul-

nerable zones) and economic factors (e.g. cost of fertil-

izer). For grassland, additional factors may include the

percentage of clover in the grass sward and stocking

density. Many of these factors vary at a finer scale than

the 1 km resolution of the simulations and are not

described in any spatially defined databases. Therefore,

the model makes assumptions about the amount of N

fertilizer applied, which presents a source of uncertainty

for the modelled changes in N2O emissions.

To quantify this uncertainty, we conducted a sensitiv-

ity analysis to explore the impacts of a �20% variation

to the default N fertilizer application rate in a sample of

the grid cells. The results of this analysis (data not

shown) show that transitions to wheat were most sensi-

tive to a proportional change in N fertilizer inputs: a

20% increase in N fertilizer led to a mean increase in

N2O emissions of about 5 t CO2e ha�1 after 35 years

(i.e. in 2050) and a 20% decrease reduced N2O emissions

by about 5.5 t CO2e ha�1
. Other transitions showed

mean deviations in N2O emissions within �2.5 t

CO2e ha�1. The shifts in N2O emissions resulting from a

�20% change in N fertilizer rates are modest, leading to

a <5% change in the mean net GHG balance of each

transition. Therefore, we do not expect uncertainty

around N fertilization rates to be a source of large

uncertainty in the modelling outcomes.

Future research needs

This study shows that future work should target sec-

ond-generation bioenergy crops (Miscanthus, SRC and

SRF), because these offer a much more favourable net

GHG balance than first-generation bioenergy crops

(wheat, sugar beet and OSR). It is noteworthy, how-

ever, that the overall GHG balance of bioenergy may

still be positive, even if there are net preharvest soil

GHG emissions due to land-use change, and the full

value chain needs to be considered (Newton-Cross &

Evans, 2015).

Whilst the type of land-use transition was the most

important factor affecting net GHG balance, crop yield

was found to be the most influential factor within each

type of transition. However, a number of limitations of

the yield data constrain the spatial accuracy of the soil

GHG balance predictions and should be the focus of

future research.

Firstly, Defra yield data for wheat (also used for the

baseline rotational crop yield), sugar beet and OSR are

spatially coarse, being available only at regional level,

and only cover a short time span. The development of

high-resolution spatial datasets of bioenergy crop yield

would greatly improve the spatial accuracy of net GHG

balance predictions.

Development of yield models is often hampered by

lack of detailed soil and plant data from which to for-

mulate process descriptions and evaluate the model.

For example, only 11 UK experimental sites with suffi-

cient data to validate the MiscanFor model were avail-

able (Hastings et al., 2009). Future research should place

an emphasis on detailed, long-term measurements of

crop and soil attributes (yield, litter inputs, C and N

contents of plant components and soil etc.), over the full

life cycle of the crop, for the latest germplasm released

from breeding programmes. Such data are required for

the development of more robust and improved parame-

terizations of process-based models, critical for future

predictions.

Models of future crop yield vary in the factors they

take into account. For example (e.g. effects of elevated

atmospheric CO2 concentration), their level of sophisti-

cation and degree to which they have been calibrated

for UK conditions. Moreover, where multiple models

exist for a given crop, the yield estimates may differ

considerably. For example, MiscanFor (Hastings et al.,

2009) predicts the highest Miscanthus yields to be in the

south-west of England, whereas the empirical model of

Richter et al. (2008) predicts relatively low yields in the

south-west. Further work on model evaluation and

model comparison is required to resolve these differ-

ences and reduce the uncertainty in model estimates. In

the short-term, the uncertainty associated with choice of

model could be quantified by modelling net GHG bal-

ance using yield forecasts produced from an ensemble

of yield models for each crop.

Overall, the reliability and spatial accuracy of future

net GHG balance modelling would benefit greatly from

improvements in bioenergy yield modelling (or direct

modelling of crop inputs of C to the soil). Standardiza-

tion of yield models for different crops, such as the

effect of soil type on soil water capacity, would enable

more reliable comparison of different land-use transi-

tions.

Finally, little is known about the impact of bioenergy

crop re-establishment on SOC. Different re-establish-

ment techniques involve different amounts of soil

disturbance, which could lead to enhanced soil organic

matter decomposition rates. Soil disturbance from

re-establishment could have a significant effect on long-

term C sequestration, with a proportion of the C seques-

tered during the previous planting cycle being lost

again as CO2 to the atmosphere (Grogan & Matthews,

2002). Research into the practicality of a range of poten-

tial re-establishment techniques and their impacts on

soil C dynamics should be a high priority.

In conclusion, we have shown that increasing yield

increases SOC so that in addition to optimizing the use

of land, and obtaining the highest energy yield per unit
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area, research into improving the yield of SRC, SRF and

Miscanthus genotypes will provide benefits to both

energy security and GHG mitigation. When assessing

the full GHG impacts of energy crops, all components

of the bioenergy value chain (e.g. cultivation, manage-

ment, harvest, transportation, processing, fossil fuel off-

set GHG impacts) need to be considered (Newton-Cross

& Evans, 2015). The findings presented here fill the criti-

cal gap in preharvest GHG emission data, used to assess

the full life cycle GHG emissions from energy crops in

bioenergy value chains.
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