12 research outputs found

    Orderly arranged NLO materials on exfoliated layeredtemplates based on dendrons with alternating moietiesat the periphery†

    Get PDF
    Nonlinear optical dendrons with alternating terminal groups of the stearyl group (C18) and chromophorewere prepared through a convergent approach. These chromophore-containing dendrons were used asthe intercalating agents for montmorillonite via an ion-exchange process. An orderly exfoliatedmorphology is obtained by mixing the dendritic structure intercalated layered silicates with a polyimide.As a result, optical nonlinearity, i.e. the Pockels effect was observed for these nanocomposites withoutresorting to the poling process. EO coefficients of 9–22 pm V 1 were achieved despite that relativelylow NLO densities were present in the nanocomposites, particularly for the samples comprising thedendrons with alternating moieties. In addition, the hedging effects of the stearyl group on the selfalignmentbehavior, electro-optical (EO) coefficient and temporal stability of the dendron-intercalatedmontmorillonite/polyimide nanocomposites were also investigated

    Preparation and Characterization of Organoclays Based on Dendrons, and Their Self-Assembly Behavior for Electro-Optics

    No full text
    二次非線性光學有機高分子材料具有比無機光學材料更大的分子設計自由度、高的非線性光學係數、高應答速度、低雷射損害、高分子質輕及易加工成膜,材料取得便宜…等優良特性。具備高光電係數、材料熱穩定性,為光電元件所必須。此外,如何避免高溫、高電場下之極化過程,以減低材料之昇華、裂化亦為一重要課題。本實驗利用具反應選擇性之構築單元(IPDA) 以收斂方法製備一末端具有發色團基(disperse red 1;DR1)之polyurethane/malonamide dendrons (G0.5~G3)。 研究首先利用IPDA中之-NCO官能基與 (DR1) 中之-OH 官能基進行加成反應產生urethane 鍵結之G0.5。之後,再將IPDA中之azetidine-2,4-dione 官能基與一級胺 (diethylenetriamine;DETA) 開環反應形成 malonamide 鍵結 (G1),反覆進行加成與開環步驟可得到高代數之樹枝狀分子,將各代數之樹枝狀分子進行結構鑑定。實驗並將具有二級胺結構之樹枝狀分子 (G1、G2、G3) 以離子交換方式將樹枝狀分子導入蒙脫土層板形成一有機黏土,其插層型態層間距分別為52 Å、133 Å及85 Å。之後將有機黏土與具高玻璃轉換溫度 (Tg = 271 oC) 、高成膜性之聚亞醯胺以10 wt%、20 wt%進行物理混摻形成具備自組裝排列之奈米複合材料,利用solvent casting方式製備具非中心對稱排列之光學薄膜。利用樹枝狀結構隨著代數成長具有明顯之阻隔效應 (site-isolation effect) 之因素,於高代數、高濃度之奈米複材下可減少聚集現象的產生,增加其非線性光學係數。 論文更進一步探討其自組裝之機制,將構築單元IPDA為核心與發色團基 (DR1) 製備出不同代數之樹枝狀有機黏土,與先前本實驗室以IDD為構築單元之樹枝狀有機黏土比較,探討其光電性質之差異。由實驗結果可知,雖然構築單元IDD之分子量較IPDA為構築單元來的大,但由於構築單元IPDA之結構 (-Ar-) 較IDD之結構 (-Ar-CH2-Ar-) 在分子排列上容易站立排列,因此導致其層間距較IDD系列來的大,且其光電係數值亦較IDD系列來的高,此合成更加證明樹枝狀結構對於自排效應之影響。In this study, a bifunctional building block compound,IPDA was used as a building block to synthesize a series of novel polyurethane/malonamide dendrons with azobenzene dyes (disperse red 1, DR1) in the exterior via a convergent route. All of the dendrons (G1, Mw = 1192 ; G2, Mw = 2948 ; G3, Mw = 6459) exhibited structural characteristics with secondary amines located on one end. With this feature, the amine salt was easily formed by the addition of hydrochloric acid. Subsequently, the amine salt proceeded to ion-exchange with Na+-MMT. By respective incorporation of the different generations of dendrons onto layered MMT, the interlayer distance of the intercalated hybrid could be precisely controlled to form a unique structure with the possibility of self-assembly. Chromophore-containing dendrons (G1、G2 and G3) were utilized to intercalate layered silicates, resulting in a large d-spacings of different generations organoclays are 52Å, 133Å, and 85Å, respectively. After blending the organoclays with a high glass transition temperature polyimide (271 oC), respectively, the interactions between the hydrogen bond-rich dendrons and polyimide in the layered confinement resulted in ordered morphology, i.e. optical nonlinearity.目錄 誌謝 I 摘要 II Abstract III 目錄 IV 表目錄 VII 圖目錄 VIII 符號縮寫對照表 XIII 一、緒論 1 1.1 前言 1 1.2 二次非線性光學現象與應用 2 二、文獻回顧與研究動機 6 2.1 二次非線性光學材料之簡介 6 2.1.1有機單晶材料 6 2.1.2藍-布膜 6 2.1.3有機非線性光學高分子材料 7 2.2 有機二次非線性光學材料之類型 8 2.2.1賓主型高分子 (guest-host polymers) 8 2.2.2側鏈型高分子 (side-chain polymers) 9 2.2.3主鏈型高分子 (main-chain polymers) 10 2.2.4交聯型高分子 (cross-linked polymers) 12 2.2.5樹枝狀型二次非線性光學材料 12 2.3 Dendritic polymers 之分類 14 2.4 Dendrimer之簡介 15 2.4.1 Dendrimer與線性分子之差別 17 2.4.2 Dendrimer之文獻回顧 18 2.4.3 Dendrimer 含NLO材料之文獻回顧 23 2.4.4利用反應選擇性製備樹枝狀分子之策略與文獻回顧 29 2.5 蒙脫土奈米複合材料 38 2.5.1蒙脫土之簡介 38 2.5.2蒙脫土/高分子奈米複合材料之分散型態 39 2.5.3蒙脫土/樹枝狀材料之文獻回顧 40 2.5.4蒙脫土奈米複合材料之自組裝行為文獻回顧 43 2.5.5蒙脫土/二次非線性樹枝狀光學材料之文獻回顧 44 2.5.6自組裝材料與二次非線性光學材料之回顧 46 2.6 研究動機與目的 51 三、實驗內容 52 3.1 實驗流程圖 52 3.2 實驗概述 52 3.3 化學藥品 54 3.4 有機溶劑 57 3.5 實驗儀器 59 3.6 其他儀器 61 3.7 實驗部份 62 3.7.1構築單元IPDA之單體合成 62 3.7.2末端含DR1發色團基之規則樹枝狀分子 (G0.5~G3) 合成 64 3.7.3聚亞醯胺之合成 68 3.8 等當量樹枝狀分子 (G1、G2、G3) /蒙托土有機黏土之製備 70 3.8.1等當量樹枝狀分子 (G1、G2、G3) /蒙托土有機黏土之製備 72 3.8.2等當量有機黏土/聚亞醯胺奈米複合材料之製備 73 3.9 光學性質檢測 74 3.9.1高分子薄膜製備 74 3.9.2波克效應之檢測原理 74 3.9.3光電係數 (Electro-optic coefficient) 之量測 79 3.9.4光損失之量測 81 四、結果與討論 82 4.1 構築單元 (IPDA) 之製備與鑑定 82 4.2 含樹枝狀分子之二次非線性光學材料 84 4.2.1末端具有DR1發色團基之樹枝狀分子 (G0.5~G3) 之製備與鑑定 84 4.2.2樹枝狀分子之熱性質分析 98 4.2.3樹枝狀分子之溶解度之分析 101 4.3 聚亞醯胺之製備與鑑定 102 4.4 樹枝狀有機黏土及其自組裝行為之探討 104 4.4.1等當量樹枝狀分子IDD-DR1及IPDA-DR1/MMT之有機黏土改質 104 4.4.2樹枝狀分子與無機黏土插層型態探討 112 4.4.3等當量有機黏土/聚亞醯胺複合材料之製備及其物理性質 114 4.4.4等當量複合材料之光學性質分析 118 4.4.5等當量複合材料之動態熱穩定性分析 120 4.4.6純有機黏土之自組裝行為 127 五、結論 129 六、參考文獻 13

    規則樹枝&;#63994;高分子改質有機黏土之製備與光電材&;#63934;自組裝&;#64008;為之探討

    No full text
    In this study, a bifunctional building block compound,IPDA was used as a building block to synthesize a series of novel polyurethane/malonamide dendrons with azobenzene dyes (disperse red 1, DR1) in the exterior via a convergent route. All of the dendrons (G1, Mw = 1192 ; G2, Mw = 2948 ; G3, Mw = 6459) exhibited structural characteristics with secondary amines located on one end. With this feature, the amine salt was easily formed by the addition of hydrochloric acid. Subsequently, the amine salt proceeded to ion-exchange with Na+-MMT. By respective incorporation of the different generations of dendrons onto layered MMT, the interlayer distance of the intercalated hybrid could be precisely controlled to form a unique structure with the possibility of self-assembly. Chromophore-containing dendrons (G1、G2 and G3) were utilized to intercalate layered silicates, resulting in a large d-spacings of different generations organoclays are 52Å, 133Å, and 85Å, respectively. After blending the organoclays with a high glass transition temperature polyimide (271 oC), respectively, the interactions between the hydrogen bond-rich dendrons and polyimide in the layered confinement resulted in ordered morphology, i.e. optical nonlinearity.二次非線性光學有機高分子材&;#63934;具有比無機光學材&;#63934;&;#63745;大的分子設計自由&;#64001;、高的非線性光學係&;#63849;、高應答速度、低雷射損害、高分子質輕及易加工成膜,材&;#63934;取得&;#63845;宜…等優良特性。具備高光電係數、材料熱穩定性,為光電元件所必須。此外,如何避免高溫、高電場下之極化過程,以減低材料之昇華、裂化亦為一重要課題。本實驗利用具反應選擇性之構築單元(IPDA) 以收斂方法製備一末端具有發色團基(disperse red 1;DR1)之polyurethane/malonamide dendrons (G0.5~G3)。 研究首先利用IPDA中之-NCO官能基與 (DR1) 中之-OH 官能基進行加成反應產生urethane 鍵結之G0.5。之後,再將IPDA中之azetidine-2,4-dione 官能基與一級胺 (diethylenetriamine;DETA) 開環反應形成 malonamide 鍵結 (G1),反覆進行加成與開環步驟可得到高代數之樹枝狀分子,將各代數之樹枝狀分子進行結構鑑定。實驗並將具有二級胺結構之樹枝狀分子 (G1、G2、G3) 以離子交換方式將樹枝狀分子導入蒙脫土層板形成一有機黏土,其插層型態層間距分別為52 &;Aring;、133 &;Aring;及85 &;Aring;。之後將有機黏土與具高玻璃轉換溫度 (Tg = 271 oC) 、高成膜性之聚亞醯胺以10 wt%、20 wt%進行物理混摻形成具備自組裝排列之奈米複合材料,利用solvent casting方式製備具非中心對稱排列之光學薄膜。利用樹枝狀結構隨著代數成長具有明顯之阻隔效應 (site-isolation effect) 之因素,於高代數、高濃度之奈米複材下可減少聚集現象的產生,增加其非線性光學係數。 論文更進一步探討其自組裝之機制,將構築單元IPDA為核心與發色團基 (DR1) 製備出不同代數之樹枝狀有機黏土,與先前本實驗室以IDD為構築單元之樹枝狀有機黏土比較,探討其光電性質之差異。由實驗結果可知,雖然構築單元IDD之分子量較IPDA為構築單元來的大,但由於構築單元IPDA之結構 (-Ar-) 較IDD之結構 (-Ar-CH2-Ar-) 在分子排列上容易站立排列,因此導致其層間距較IDD系列來的大,且其光電係數值亦較IDD系列來的高,此合成更加證明樹枝狀結構對於自排效應之影響。目錄 誌謝 I 摘要 II Abstract III 目錄 IV 表目錄 VII 圖目錄 VIII 符號縮寫對照表 XIII 一、緒論 1 1.1 前言 1 1.2 二次非線性光學現象與應用 2 二、文獻回顧與研究動機 6 2.1 二次非線性光學材料之簡介 6 2.1.1有機單晶材料 6 2.1.2藍-布膜 6 2.1.3有機非線性光學高分子材料 7 2.2 有機二次非線性光學材料之類型 8 2.2.1賓主型高分子 (guest-host polymers) 8 2.2.2側鏈型高分子 (side-chain polymers) 9 2.2.3主鏈型高分子 (main-chain polymers) 10 2.2.4交聯型高分子 (cross-linked polymers) 12 2.2.5樹枝狀型二次非線性光學材料 12 2.3 Dendritic polymers 之分類 14 2.4 Dendrimer之簡介 15 2.4.1 Dendrimer與線性分子之差別 17 2.4.2 Dendrimer之文獻回顧 18 2.4.3 Dendrimer 含NLO材料之文獻回顧 23 2.4.4利用反應選擇性製備樹枝狀分子之策略與文獻回顧 29 2.5 蒙脫土奈米複合材料 38 2.5.1蒙脫土之簡介 38 2.5.2蒙脫土/高分子奈米複合材料之分散型態 39 2.5.3蒙脫土/樹枝狀材料之文獻回顧 40 2.5.4蒙脫土奈米複合材料之自組裝行為文獻回顧 43 2.5.5蒙脫土/二次非線性樹枝狀光學材料之文獻回顧 44 2.5.6自組裝材料與二次非線性光學材料之回顧 46 2.6 研究動機與目的 51 三、實驗內容 52 3.1 實驗流程圖 52 3.2 實驗概述 52 3.3 化學藥品 54 3.4 有機溶劑 57 3.5 實驗儀器 59 3.6 其他儀器 61 3.7 實驗部份 62 3.7.1構築單元IPDA之單體合成 62 3.7.2末端含DR1發色團基之規則樹枝狀分子 (G0.5~G3) 合成 64 3.7.3聚亞醯胺之合成 68 3.8 等當量樹枝狀分子 (G1、G2、G3) /蒙托土有機黏土之製備 70 3.8.1等當量樹枝狀分子 (G1、G2、G3) /蒙托土有機黏土之製備 72 3.8.2等當量有機黏土/聚亞醯胺奈米複合材料之製備 73 3.9 光學性質檢測 74 3.9.1高分子薄膜製備 74 3.9.2波克效應之檢測原理 74 3.9.3光電係數 (Electro-optic coefficient) 之量測 79 3.9.4光損失之量測 81 四、結果與討論 82 4.1 構築單元 (IPDA) 之製備與鑑定 82 4.2 含樹枝狀分子之二次非線性光學材料 84 4.2.1末端具有DR1發色團基之樹枝狀分子 (G0.5~G3) 之製備與鑑定 84 4.2.2樹枝狀分子之熱性質分析 98 4.2.3樹枝狀分子之溶解度之分析 101 4.3 聚亞醯胺之製備與鑑定 102 4.4 樹枝狀有機黏土及其自組裝行為之探討 104 4.4.1等當量樹枝狀分子IDD-DR1及IPDA-DR1/MMT之有機黏土改質 104 4.4.2樹枝狀分子與無機黏土插層型態探討 112 4.4.3等當量有機黏土/聚亞醯胺複合材料之製備及其物理性質 114 4.4.4等當量複合材料之光學性質分析 118 4.4.5等當量複合材料之動態熱穩定性分析 120 4.4.6純有機黏土之自組裝行為 127 五、結論 129 六、參考文獻 13

    Nasal NK/T-cell Lymphoma: Computed Tomography and Magnetic Resonance Imaging Findings

    No full text
    Primary nasal natural killer (NK)/T-cell lymphoma is the most common cellular subtype seen in nasal lym-phomas. It is rare in the Western population but occurs more frequently in Asia, South America, and Mexico. The purpose of this study was to describe the computed tomography (CT) and magnetic resonance (MR) imaging findings of primary nasal NK/T-cell lymphoma. Methods: During the period between January 1990 and June 2006, the CT (n=24) and MR (n = 6) images of 24 patients with biopsy-proved nasal NK/T-cell lymphoma were reviewed retrospectively. Both CT and MR images were evaluated for site and extent of disease and for pattern of involvement of adjacent areas. Results: The most common symptoms at presentation were nasal obstruction, nasal discharge, and epistaxis. There was involvement of the unilateral nasal cavity in 16, bilateral nasal cavity including nasal septum in 5 and nasal choana in 3. Sites of extension outside the nasal cavity included tumor extension into paranasal sinuses (n = 15), nasopharynx (n = 5), nasal labial fold (n = 3), oropharynx (n=2), infratemporal fossa (n = 2), other subcutaneous soft tissue of the face (n = 2) and anterior cranial fossa base (n = 1). Bony destruction was demonstrated in 18 cases, involving the sinus bony wall (n = 15), nasal turbinate (n = 10), lamina papyracea (n = 6), orbital floor (n = 3), and hard palate (n = 2). Regional lymphadenopathy was also detected in 3 patients with nasal NK/T-cell lymphoma. Conclusion: The CT and MR appearances of nasal NK/T-cell lymphoma are nonspecific, and the diagnosis requires histologic confirmation. However, the differential diagnosis of nasal NK/T-cell lymphoma should be included if the images present soft tissue of the nasal cavity with bony erosion or destruction; involvement of the orbital cavity, nasopharynx and infratemporal fossa; and subcutaneous or nasolabial fold soft tissue infiltration, especially in Asian populations
    corecore