49 research outputs found

    Spatiotemporal variability of modern precipitation δ18O in the central Andes and implications for paleoclimate and paleoaltimetry estimates

    Full text link
    Understanding the patterns of rainfall isotopic composition in the central Andes is hindered by sparse observations. Despite limited observational data, stable isotope tracers have been commonly used to constrain modern‐to‐ancient Andean atmospheric processes, as well as to reconstruct paleoclimate and paleoaltimetry histories. Here, we present isotopic compositions of precipitation (δ18Op and δDp) from 11 micrometeorological stations located throughout the Bolivian Altiplano and along its eastern flank at ~21.5°S. We collected and isotopically analyzed 293 monthly bulk precipitation samples (August 2008 to April 2013). δ18Op values ranged from −28.0‰ to 9.6‰, with prominent seasonal cycles expressed at all stations. We observed a strong relationship between the δ18Op and elevation, though it varies widely in time and space. Constraints on air sourcing estimated from atmospheric back trajectory calculations indicate that continental‐scale climate dynamics control the interannual variability in δ18Op, with upwind precipitation anomalies having the largest effect. The impact of precipitation anomalies in distant air source regions to the central Andes is in turn modulated by the Bolivian High. The importance of the Bolivian High is most clearly observed on the southern Bolivian Altiplano. However, monthly variability among Altiplano stations can exceed 10‰ in δ18Op on the plateau and cannot be explained by elevation or source variability, indicating a nontrivial role for local scale effects on short timescales. The strong influence of atmospheric circulation on central Andean δ18Op requires that paleoclimate and paleoaltimetry studies consider the role of South American atmospheric paleocirculation in their interpretation of stable isotopic values as proxies.Key PointsFive‐year record of central Andes precipitation isotopic compositionPrecipitation isotopes are elevation dependent, but vary in space and timePrecipitation isotope variability is related to large‐scale climate dynamicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111974/1/jgrd52161.pd

    Genotype, Childhood Maltreatment, and Their Interaction in the Etiology of Adult Antisocial Behaviors

    Get PDF
    BACKGROUND: Maltreatment by an adult or caregiver during childhood is a prevalent and important predictor of antisocial behaviors in adulthood. A functional promoter polymorphism in the monoamine oxidase A (MAOA) gene has been implicated as a moderating factor in the relationship between childhood maltreatment and antisocial behaviors. Although there have been numerous attempts at replicating this observation, results remain inconclusive. METHODS: We examined this gene-environment interaction hypothesis in a sample of 3356 white and 960 black men (aged 24-34) participating in the National Longitudinal Study of Adolescent Health. RESULTS: Primary analysis indicated that childhood maltreatment was a significant risk factor for later behaviors that violate rules and the rights of others (p .05). Power analyses indicated that these results were not due to insufficient statistical power. CONCLUSIONS: We could not confirm the hypothesis that MAOA genotype moderates the relationship between childhood maltreatment and adult antisocial behaviors

    Role of biomarkers and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion: a systematic review

    Get PDF
    OBJECTIVE: Determine the role of fluid-based biomarkers, advanced neuroimaging, genetic testing and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion (SRC). DESIGN: Systematic review. DATA SOURCES: Searches of seven databases from 1 January 2001 through 24 March 2022 using keywords and index terms relevant to concussion, sports and neurobiological recovery. Separate reviews were conducted for studies involving neuroimaging, fluid biomarkers, genetic testing and emerging technologies. A standardised method and data extraction tool was used to document the study design, population, methodology and results. Reviewers also rated the risk of bias and quality of each study. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Studies were included if they: (1) were published in English; (2) represented original research; (3) involved human research; (4) pertained only to SRC; (5) included data involving neuroimaging (including electrophysiological testing), fluid biomarkers or genetic testing or other advanced technologies used to assess neurobiological recovery after SRC; (6) had a minimum of one data collection point within 6 months post-SRC; and (7) contained a minimum sample size of 10 participants. RESULTS: A total of 205 studies met inclusion criteria, including 81 neuroimaging, 50 fluid biomarkers, 5 genetic testing, 73 advanced technologies studies (4 studies overlapped two separate domains). Numerous studies have demonstrated the ability of neuroimaging and fluid-based biomarkers to detect the acute effects of concussion and to track neurobiological recovery after injury. Recent studies have also reported on the diagnostic and prognostic performance of emerging technologies in the assessment of SRC. In sum, the available evidence reinforces the theory that physiological recovery may persist beyond clinical recovery after SRC. The potential role of genetic testing remains unclear based on limited research. CONCLUSIONS: Advanced neuroimaging, fluid-based biomarkers, genetic testing and emerging technologies are valuable research tools for the study of SRC, but there is not sufficient evidence to recommend their use in clinical practice. PROSPERO REGISTRATION NUMBER: CRD42020164558

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease

    The Importance of Getting Names Right: The Myth of Markets for Water

    Full text link
    corecore