36 research outputs found

    Nonthermal Emission from Star-Forming Galaxies

    Full text link
    The detections of high-energy gamma-ray emission from the nearby starburst galaxies M82 & NGC253, and other local group galaxies, broaden our knowledge of star-driven nonthermal processes and phenomena in non-AGN star-forming galaxies. We review basic aspects of the related processes and their modeling in starburst galaxies. Since these processes involve both energetic electrons and protons accelerated by SN shocks, their respective radiative yields can be used to explore the SN-particle-radiation connection. Specifically, the relation between SN activity, energetic particles, and their radiative yields, is assessed through respective measures of the particle energy density in several star-forming galaxies. The deduced energy densities range from O(0.1) eV/cm^3 in very quiet environments to O(100) eV/cm^3 in regions with very high star-formation rates.Comment: 17 pages, 5 figures, to be published in Astrophysics and Space Science Proceeding

    The radio spectral energy distribution and star-formation rate calibration in galaxies

    Get PDF
    We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, and 10.5 GHz combined with archive data allow us, for the first time, to determine the mid-RC (1-10 GHz, MRC) bolometric luminosities and further present calibration relations versus the monochromatic radio luminosities. The 1-10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo technique leading to measurements for the nonthermal spectral index (S-nu similar to nu(-alpha nt)) and the thermal fraction (f(th)) with mean values of alpha(nt)= 0.97 +/- 0.16(0.79 +/- 0.15 for the total spectral index) and f(th) = (10 +/- 9)% at 1.4 GHz. The MRC luminosity changes over similar to 3 orders of magnitude in the sample, 4.3 x 10(2) L-circle dot < MRC < 3.9 x 10(5) L-circle dot. The thermal emission is responsible for similar to 23% of the MRC on average. We also compare the extinction-corrected diagnostics of the. star-formation rate (SFR) with the thermal and nonthermal radio tracers and derive the first star-formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing SFR surface density, indicating the effect of the star-formation feedback on the cosmic-ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with SFR, due to the amplification of the magnetic fields in starforming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/starforming galaxies are detected

    The ionized gas in nearby galaxies as traced by the [NII] 122 and 205 μm transitions

    Get PDF
    The [NII] 122 and 205 \mu m transitions are powerful tracers of the ionized gas in the interstellar medium. By combining data from 21 galaxies selected from the Herschel KINGFISH and Beyond the Peak surveys, we have compiled 141 spatially resolved regions with a typical size of ~1 kiloparsec, with observations of both [NII] far-infrared lines. We measure [NII] 122/205 line ratios in the ~0.6-6 range, which corresponds to electron gas densities nen_e~1-300 cm3^{-3}, with a median value of nen_e=30 cm3^{-3}. Variations in the electron density within individual galaxies can be as a high as a factor of ~50, frequently with strong radial gradients. We find that nen_e increases as a function of infrared color, dust-weighted mean starlight intensity, and star formation rate surface density (ΣSFR\Sigma_{SFR}). As the intensity of the [NII] transitions is related to the ionizing photon flux, we investigate their reliability as tracers of the star formation rate (SFR). We derive relations between the [NII] emission and SFR in the low-density limit and in the case of a log-normal distribution of densities. The scatter in the correlation between [NII] surface brightness and ΣSFR\Sigma_{SFR} can be understood as a property of the nen_e distribution. For regions with nen_e close to or higher than the [NII] line critical densities, the low-density limit [NII]-based SFR calibration systematically underestimates the SFR since [NII] emission is collisionally quenched. Finally, we investigate the relation between [NII] emission, SFR, and nen_e by comparing our observations to predictions from the MAPPINGS-III code.Fulbright-CONICYT grantThis is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Institute of Physics

    Cloud-scale Radio Surveys of Star Formation and Feedback in Triangulum Galaxy M 33: VLA Observations

    Get PDF
    Studying the interplay between massive star formation and the interstellar medium (ISM) is paramount to understand the evolution of galaxies. Radio continuum (RC) emission serves as an extinction-free tracer of both massive star formation and the energetic components of the interstellar medium. We present a multi-band radio continuum survey of the local group galaxy M 33 down to ~30 pc linear resolution observed with the Karl G. Jansky Very Large Array (VLA). We calibrate the star-formation rate surface density and investigate the impact of diffuse emission on this calibration using a structural decomposition. Separating the thermal and nonthermal emission components, the correlation between different phases of the interstellar medium and the impact of massive star formation are also investigated. Radio sources with sizes <~ 200 pc constitute about 36% (46%) of the total RC emission at 1.5 GHz (6.3 GHz) in the inner 18' x 18' (or 4kpc x 4kpc) disk of M 33. The nonthermal spectral index becomes flatter with increasing star-formation rate surface density, indicating the escape of cosmic ray electrons {from their birth places}. The magnetic field strength also increases with star-formation rate following a bi-modal relation, indicating that the small-scale turbulent dynamo acts more efficiently at higher luminosities and star-formation rates. Although the correlations are tighter in star-forming regions, the nonthermal emission is correlated also with the more quiescent molecular gas in the ISM. An almost linear molecular star-formation law exists in M 33 when excluding diffuse structures. Massive star formation amplifies the magnetic field and increases the number of high-energy cosmic ray electrons, which can help the onset of winds and outflows

    The Radio Spectral Energy Distribution and Star Formation Rate Calibration in Galaxies

    Get PDF
    We study the spectral energy distribution (SED) of the radio continuum (RC) emission from the Key Insight in Nearby Galaxies Emitting in Radio (KINGFISHER) sample of nearby galaxies to understand the energetics and origin of this emission. Effelsberg multi-wavelength observations at 1.4, 4.8, 8.4, and 10.5 GHz combined with archive data allow us, for the first time, to determine the mid-RC (1–10 GHz, MRC) bolometric luminosities and further present calibration relations versus the monochromatic radio luminosities. The 1–10 GHz radio SED is fitted using a Bayesian Markov Chain Monte Carlo technique leading to measurements for the nonthermal spectral index (SνS_{\nu} ~ ν\nuαnt^ {-\alpha_{nt}}) and the thermal fraction (fthf_{\text{th}}) with mean values of αnt\alpha_{nt} = 0.97 ± 0.16 (0.79 ± 0.15 for the total spectral index) and fthf_{\text{th}} = (10 ± 9)% at 1.4 GHz. The MRC luminosity changes over ~3 orders of magnitude in the sample, 4.3 ×\times 102^2 LL_\odot < MRC < 3.9 ×\times 105^5 LL_\odot. The thermal emission is responsible for ~23% of the MRC on average. We also compare the extinction-corrected diagnostics of the star-formation rate (SFR) with the thermal and nonthermal radio tracers and derive the first star-formation calibration relations using the MRC radio luminosity. The nonthermal spectral index flattens with increasing SFR surface density, indicating the effect of the star-formation feedback on the cosmic-ray electron population in galaxies. Comparing the radio and IR SEDs, we find that the FIR-to-MRC ratio could decrease with SFR, due to the amplification of the magnetic fields in star-forming regions. This particularly implies a decrease in the ratio at high redshifts, where mostly luminous/star-forming galaxies are detected.F.S.T. acknowledges support by the German Research Foundation DFG via the grant TA 801/1-1 and the Spanish Ministry of Economy and Competitiveness(MINECO) under grant number AYA2013-41243-P. R.B. acknowledges financial support from DFG Research Unit FOR1254. D.D.M acknowledges support from ERCStG 307215 (LODESTONE)

    Updated 34-band Photometry for the SINGS/KINGFISH Samples of Nearby Galaxies

    Get PDF
    The American Astronomical Society. All rights reserved..We present an update to the ultraviolet-to-radio database of global broadband photometry for the 79 nearby galaxies that comprise the union of the KINGFISH (Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel\textit{Herschel}) and SINGS (Spitzer \textit{Spitzer } Infrared Nearby Galaxies Survey) samples. The 34-band data set presented here includes contributions from observational work carried out with a variety of facilities including GALEX\textit{GALEX}, SDSS, Pan-STARRS1, NOAO, 2MASS, \textit{NOAO, 2MASS, } Wide-Field Infrared Survey Explorer, Spitzer, Herschel, Planck, JCMT\textit{Wide-Field Infrared Survey Explorer, Spitzer, Herschel, Planck, JCMT}, and the VLA\textit{VLA}. Improvements of note include recalibrations of previously published SINGS BVR C_{C} I C_{C} and KINGFISH far-infrared/submillimeter photometry. Similar to previous results in the literature, an excess of submillimeter emission above model predictions is seen primarily for low-metallicity dwarf or irregular galaxies. This 33-band photometric data set for the combined KINGFISH+SINGS sample serves as an important multiwavelength reference for the variety of galaxies observed at low redshift. A thorough analysis of the observed spectral energy distributions is carried out in a companion paper

    Updated 34-band Photometry for the SINGS/KINGFISH Samples of Nearby Galaxies

    Get PDF
    The American Astronomical Society. All rights reserved..We present an update to the ultraviolet-to-radio database of global broadband photometry for the 79 nearby galaxies that comprise the union of the KINGFISH (Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel\textit{Herschel}) and SINGS (Spitzer \textit{Spitzer } Infrared Nearby Galaxies Survey) samples. The 34-band data set presented here includes contributions from observational work carried out with a variety of facilities including GALEX\textit{GALEX}, SDSS, Pan-STARRS1, NOAO, 2MASS, \textit{NOAO, 2MASS, } Wide-Field Infrared Survey Explorer, Spitzer, Herschel, Planck, JCMT\textit{Wide-Field Infrared Survey Explorer, Spitzer, Herschel, Planck, JCMT}, and the VLA\textit{VLA}. Improvements of note include recalibrations of previously published SINGS BVR C_{C} I C_{C} and KINGFISH far-infrared/submillimeter photometry. Similar to previous results in the literature, an excess of submillimeter emission above model predictions is seen primarily for low-metallicity dwarf or irregular galaxies. This 33-band photometric data set for the combined KINGFISH+SINGS sample serves as an important multiwavelength reference for the variety of galaxies observed at low redshift. A thorough analysis of the observed spectral energy distributions is carried out in a companion paper

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Position paper: The potential role of optical biopsy in the study and diagnosis of environmental enteric dysfunction

    Get PDF
    Environmental enteric dysfunction (EED) is a disease of the small intestine affecting children and adults in low and middle income countries. Arising as a consequence of repeated infections, gut inflammation results in impaired intestinal absorptive and barrier function, leading to poor nutrient uptake and ultimately to stunting and other developmental limitations. Progress towards new biomarkers and interventions for EED is hampered by the practical and ethical difficulties of cross-validation with the gold standard of biopsy and histology. Optical biopsy techniques — which can provide minimally invasive or noninvasive alternatives to biopsy — could offer other routes to validation and could potentially be used as point-of-care tests among the general population. This Consensus Statement identifies and reviews the most promising candidate optical biopsy technologies for applications in EED, critically assesses them against criteria identified for successful deployment in developing world settings, and proposes further lines of enquiry. Importantly, many of the techniques discussed could also be adapted to monitor the impaired intestinal barrier in other settings such as IBD, autoimmune enteropathies, coeliac disease, graft-versus-host disease, small intestinal transplantation or critical care
    corecore