651 research outputs found

    Axion-photon Couplings in Invisible Axion Models

    Get PDF
    We reexamine the axion-photon couplings in various invisible axion models motivated by the recent proposal of using optical interferometry at the ASST facility in the SSCL to search for axion. We illustrate that the assignment of U(1)PQU(1)_{PQ} charges for the fermion fields plays an important role in determining the couplings. Several simple non-minimal invisible axion models with suppressed and enhanced axion-photon couplings are constructed, respectively. We also discuss the implications of possible new experiments to detect solar axions by conversion to XX-rays in a static magnetic apparatus tracking the sun.Comment: 14 pages, LaTeX fil

    Attentive Learning of Sequential Handwriting Movements: A Neural Network Model

    Full text link
    Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-92-J-1309); National Science Foundation (IRI-97-20333); National Institutes of Health (I-R29-DC02952-01)

    Analysis of human performance as a measure of mental fatigue

    Get PDF
    In our day to day, we often experience a sense of being tired due to mental or physical workload. Along with that, there is also a feeling of degrading performance, even after the completion of simple tasks. These mental states however, are often not felt consciously or are ignored. This is an attitude that may result in human error, failure, and may lead to potential health problems together with a decrease in quality of life. States of acute mental fatigue may be detected with the close monitoring of certain indicators, such as productivity, performance and health indicators. In this paper, a model and prototype are proposed to detect and monitor acute acute fatigue, based on non-invasive Humancomputer Interaction (HCI). This approach will enable the development of better working environments, with an impact on the quality of life and the work produced.This work was developed in the context of the project CAMCoF - Contextaware Multimodal Communication Framework funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Funda ção para a CiĂȘncia e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-028980

    Axion Radiation from Strings

    Get PDF
    This paper revisits the problem of the string decay contribution to the axion cosmological energy density. We show that this contribution is proportional to the average relative increase when axion strings decay of a certain quantity NaxN_{\rm ax} which we define. We carry out numerical simulations of the evolution and decay of circular and non-circular string loops, of bent strings with ends held fixed, and of vortex-antivortex pairs in two dimensions. In the case of string loops and of vortex-antivortex pairs, NaxN_{\rm ax} decreases by approximately 20%. In the case of bent strings, NaxN_{\rm ax} remains constant or increases slightly. Our results imply that the string decay contribution to the axion energy density is of the same order of magnitude as the well-understood contribution from vacuum realignment.Comment: 29 pages, 10 figure

    Smoothed Particle Hydrodynamics with particle splitting, applied to self-gravitating collapse

    Get PDF
    We describe and demonstrate a method for increasing the resolution locally in a Smoothed Particle Hydrodynamic (SPH) simulation, by splitting particles. We show that in simulations of self-gravitating collapse (of the sort which are presumed to occur in star formation) the method is stable, and affords great savings in computer time and memory. When applied to the standard Boss & Bodenheimer test -- which has been shown to depend critically on fulfilment of the Jeans Condition -- the results are comparable both with those obtained using Adaptive Mesh Refinement, and with those obtained using a standard high-resolution SPH simulation, but they are achieved with considerably less computational resource. Further development and testing is required before the method can safely be applied to more general flows.Comment: 8 pages, 6 figure

    Discrete symmetries, invisible axion and lepton number symmetry in an economic 3-3-1 model

    Full text link
    We show that Peccei-Quinn and lepton number symmetries can be a natural outcome in a 3-3-1 model with right-handed neutrinos after imposing a Z_11 x Z_2 symmetry. This symmetry is suitably accommodated in this model when we augmented its spectrum by including merely one singlet scalar field. We work out the breaking of the Peccei-Quinn symmetry, yielding the axion, and study the phenomenological consequences. The main result of this work is that the solution to the strong CP problem can be implemented in a natural way, implying an invisible axion phenomenologically unconstrained, free of domain wall formation and constituting a good candidate for the cold dark matter.Comment: 17 pages, Revtex

    Simulations of galactic dynamos

    Full text link
    We review our current understanding of galactic dynamo theory, paying particular attention to numerical simulations both of the mean-field equations and the original three-dimensional equations relevant to describing the magnetic field evolution for a turbulent flow. We emphasize the theoretical difficulties in explaining non-axisymmetric magnetic fields in galaxies and discuss the observational basis for such results in terms of rotation measure analysis. Next, we discuss nonlinear theory, the role of magnetic helicity conservation and magnetic helicity fluxes. This leads to the possibility that galactic magnetic fields may be bi-helical, with opposite signs of helicity and large and small length scales. We discuss their observational signatures and close by discussing the possibilities of explaining the origin of primordial magnetic fields.Comment: 28 pages, 15 figure, to appear in Lecture Notes in Physics "Magnetic fields in diffuse media", Eds. E. de Gouveia Dal Pino and A. Lazaria

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
    • 

    corecore